
J Glob Optim (2016) 65:369–400
DOI 10.1007/s10898-015-0350-z

Heuristics for exact nonnegative matrix factorization

Arnaud Vandaele1 · Nicolas Gillis1 ·
François Glineur2,3 · Daniel Tuyttens1

Received: 26 November 2014 / Accepted: 8 August 2015 / Published online: 5 September 2015
© Springer Science+Business Media New York 2015

Abstract The exact nonnegative matrix factorization (exact NMF) problem is the following:
given an m-by-n nonnegative matrix X and a factorization rank r , find, if possible, an m-
by-r nonnegative matrix W and an r -by-n nonnegative matrix H such that X = W H . In
this paper, we propose two heuristics for exact NMF, one inspired from simulated annealing
and the other from the greedy randomized adaptive search procedure. We show empirically
that these two heuristics are able to compute exact nonnegative factorizations for several
classes of nonnegative matrices (namely, linear Euclidean distance matrices, slack matrices,
unique-disjointness matrices, and randomly generated matrices) and as such demonstrate
their superiority over standardmulti-start strategies.We also consider a hybridization between
these two heuristics that allows us to combine the advantages of both methods. Finally, we
discuss the use of these heuristics to gain insight on the behavior of the nonnegative rank, i.e.,
the minimum factorization rank such that an exact NMF exists. In particular, we disprove a

This paper presents research results of the Belgian Network DYSCO (Dynamical Systems, Control, and
Optimization), funded by the Interuniversity Attraction Poles Programme initiated by the Belgian Science
Policy Office, and of the Concerted Research Action (ARC) programme supported by the Federation
Wallonia-Brussels (contract ARC 14/19-060).

B Arnaud Vandaele
arnaud.vandaele@umons.ac.be

Nicolas Gillis
nicolas.gillis@umons.ac.be

François Glineur
francois.glineur@uclouvain.be

Daniel Tuyttens
daniel.tuyttens@umons.ac.be

1 Department of Mathematics and Operational Research, Faculté Polytechnique, Université de Mons,
Rue de Houdain 9, 7000 Mons, Belgium

2 Center for Operations Research and Econometrics, Université catholique de Louvain, Voie du
Roman Pays, 34, 1348 Louvain-La-Neuve, Belgium

3 ICTEAM Institute, Université catholique de Louvain, 1348 Louvain-La-Neuve, Belgium

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-015-0350-z&domain=pdf
http://orcid.org/0000-0001-8181-3043


370 J Glob Optim (2016) 65:369–400

conjecture on the nonnegative rank of a Kronecker product, propose a new upper bound on
the extension complexity of generic n-gons and conjecture the exact value of (i) the extension
complexity of regular n-gons and (ii) the nonnegative rank of a submatrix of the slack matrix
of the correlation polytope.

Keywords Nonnegative matrix factorization · Exact nonnegative matrix factorization ·
Heuristics · Simulated annealing · GRASP · Hybridization · Nonnegative rank · Linear
Euclidean distance matrices · Slack matrices · Extension complexity

1 Introduction

Nonnegative matrix factorization (NMF) is the problem of finding good approximations of
a given nonnegative matrix as a low-rank product of two nonnegative matrices. This linear
dimensionality reduction technique has been used very successfully for a large variety of
machine learning and data mining tasks, including text mining and image processing [39].
Formally, given a nonnegative matrix X ∈ R

m×n+ and a factorization rank r , NMF looks
for two nonnegative matrices W ∈ R

m×r+ and H ∈ R
r×n+ such that X ≈ W H . Despite the

fact that NMF is NP-hard in general [53], it has been used successfully in many practical
situations. A large number of dedicated nonlinear local optimization schemes have been
developed to compute good factorizations [9], e.g., to try identifying good local minima of
the following nonconvex optimization problem

min
W∈Rm×r ,H∈Rr×n

||X − W H ||2F such that W ≥ 0 and H ≥ 0,

where ||.||F is the Frobenius norm. Nearly all NMF algorithms are iterative: at each step,
they aim to improve the current solution. In practice, these algorithms are usually initialized
randomly, or with some ad hoc strategies; see, e.g., [9,20] and the references therein.

Comparatively, much less attention has been given in the literature to the development
of heuristic algorithms aimed at finding better local minima of the NMF approximation
problem. In this paper, we tackle the problem of computing high quality local minima for the
NMF problem. In particular, our focus is on finding exact nonnegative factorizations, that is,
computing nonnegative factors W and H such that X = W H holds exactly, a problem we
will refer to as exact NMF. The minimum factorization rank for which such an exact NMF
exists is called the nonnegative rank of X and is denoted rank+(X) [12].

1.1 Motivating applications

For machine learning and data mining applications, it typically does not make sense to look
for exact NMF’s because the data is usually contaminated with noise. However, several
other applications are closely related to exact NMF and the nonnegative rank, including the
following.

– Computing the minimum biclique cover number of a bipartite graph Let G = (V =
V1 ∪ V2, E) be a bipartite graph with V1 = {s1, s2, . . . , sm}, V2 = {t1, t2, . . . , tn} and
E ⊆ V1×V2. A complete bipartite subgraph of G, referred to as a biclique, is a subgraph
G ′ = (V ′

1 ∪ V ′
2, E ′) with V ′

1 ⊆ V1, V ′
2 ⊆ V2 and E ′ ⊆ E such that E ′ = V ′

1 × V ′
2, that is,

all vertices in V ′
1 and V ′

2 are connected. The minimum biclique cover number bc(G) of G
is the minimum number of bicliques needed to cover all edges in G. Let XG ∈ {0, 1}m×n

be the biadjacency matrix of the graph, that is, XG(i, j) = 1 for all pairs (i, j) such

123



J Glob Optim (2016) 65:369–400 371

that (si , t j ) ∈ E . A biclique of G corresponds to a nonzero combinatorial rectangle
in the biadjacency matrix XG (that is, a submatrix containing only positive entries).
Given an exact NMF of the biadjacency matrix XG = W H = ∑

k W (:, k)H(k, :)
where W (:, k) denotes the kth column of W and H(k, :) the kth row of H , the nonzero
pattern of each rank-one factor W (:, k)H(k, :) must correspond to a biclique. In fact,
because W and H are nonnegative, XG(i, j) = 0 ⇒ W (i, k)H(k, j) = 0 for all
k where XG(i, j) denotes the entry of XG at position (i, j). Moreover, the union of
the bicliques corresponding to the rank-one factors must cover G since XG = W H .
Therefore,

bc(G) ≤ rank+(XG),

and computing an exact NMF of XG provides an upper bound for the minimum biclique
cover of G (although this bound for bc(G) based on the nonnegative rank does not seem
to have been used much in the literature). Conversely, a minimum biclique cover of
G provides a lower bound for the nonnegative rank of XG , which is referred to as the
rectangle covering bound and is denoted rc(XG) = bc(G) ≤ rank+(XG); see [16] and
the references therein.

– Computing the extension complexity of polyhedra Given a polytope P , an extension
(or lift, or extended formulation) of P is a higher-dimensional polytope Q for which
there exists a linear projection π such that π(Q) = P . If the number of facets of P
is large (possibly growing exponentially with the dimension k), a crucial question in
combinatorial optimization is whether there exists an extension with a small number
of facets (ideally bounded by a polynomial in the dimension k), in which case a linear
program over P can potentially be solved much more effectively using an equivalent
formulation over Q. The minimum number of facets appearing in any extension of P
is called the extension complexity of P . In [55], Yannakakis proved that the extension
complexity of a polytope P is equal to the nonnegative rank of its slack matrix SP (see
Sect. 2 for a definition of the slack matrix of a polytope). It is also worth mentioning
that any exact NMF of SP provides an explicit extension for P . This result has been
extensively used recently to prove bounds on the extension complexity of well-known
polytopes; see [13,28,35] and the references therein. For example, it was shown very
recently that the perfect matching polytope admits no polynomial-size extension [46],
answering a long-standing open question in combinatorial optimization.

– Conjecturing new theoretical results on the nonnegative rank, or disproving them As
any exact NMF of a nonnegative matrix provides an upper bound on its nonnegative
rank, one can use this technique to find counter-examples to conjectures dealing with
the nonnegative rank of matrices, or strengthen our belief that some conjectures are
correct. For example, Beasley and Laffey [2] developed some lower bounding techniques
for the nonnegative rank of n-by-n linear Euclidean distance matrices (see Sect. 3 for
more details) and conjectured that these rank-three matrices have nonnegative rank n.
Using a standard NMF algorithm combined with a simple multi-start heuristic, Gillis
and Glineur [23] found a counterexample: the 6-by-6 linear Euclidean distance matrix
M(i, j) = (i − j)2 (1 ≤ i, j ≤ 6) has nonnegative rank five, which disproved the
conjecture and motivated the development of stronger lower bounds for the nonnegative
rank of such matrices. Along the same line, Hrubeš [31] developed some new upper
bounding techniques for the nonnegative rank of such matrices. In Sect. 6, we discuss
several examples where the use of exact NMF algorithms allows us to gain insight on
the nonnegative rank.

123



372 J Glob Optim (2016) 65:369–400

Other problems closely related to nonnegative rank and exact NMF computations arise in
communication complexity [41], probability [8] and computational geometry [23]; see also,
e.g., [20] and the references therein.

1.2 Computational complexity

Given an m-by-n nonnegative matrix X , Vavasis [53] proved that checking whether
rank(X) = rank+(X) is NP-hard. Therefore, unless P = N P , no algorithm can decide
whether rank(X) = rank+(X) using a number of arithmetic operations bounded by a poly-
nomial in m, n and rank(X). Nevertheless, Arora et al. [1] showed that checking whether a
nonnegative matrix admits an exact rank-r NMF can be done in time polynomial in m and n
(i.e., considering the factorization rank r fixed). This result relies on a clever reformulation
of the exact NMF problem for an m × n matrix as a system of O(mn) fixed-degree poly-
nomial equalities involving O(r22r ) variables. This, combined with the fact that a system
of k polynomial inequalities up to degree d and in p variables can be solved in O((kd)p)

operations, shows that checking the existence of an exact rank-r NMF can be done with total
complexity O((mn)r22r

).
This complexity was later improved byMoitra [42] toO((mn)r2). Unfortunately, because

they rely on quantifier elimination, these results do not translate into practical algorithms, even
when dealing with very small matrices. For example, we were unable to compute a rank-three
NMF of a 4-by-4 matrix (which is actually the first non-trivial case since rank(X) = 2 ⇔
rank+(X) = 2 [12,51]) using either the built-in polynomial equation solver of Mathematica
(which runs out of memory after performing a large number of operations) or the qepcad
software [7] dedicated to quantifier elimination.

It is therefore not clear whether these theory-oriented complexity results can prove useful
to perform exact NMF, even for small-scale matrices, which prompted us to introduce the
use of heuristics to tackle the problem.

Remark 1 (Separability) Note that Arora et al. [1] also discuss the separabilty condition that
makes the NMF problem easily solvable. This condition states that there exists an exact
factorization where all columns of the first factor also appear as columns of the input matrix.
Although this condition makes sense in several applications (see, e.g., [24] and the references
therein), it is rather strong and is in general not satisfied. In particular, it is not satisfied by
the matrices considered in this paper.

1.3 Contribution and outline of the paper

The paper is organized as follows. Section 2 lists the classes of nonnegativematrices onwhich
we benchmark exact NMF algorithms, and provides a description of the corresponding appli-
cations. Section 3 presents two multi-start strategies, and compares their combination with
several initialization strategies and state-of-the-art NMF algorithms. This allows us to select
an NMF algorithm (that is, a method to locally improve a current solution) and initialization
strategies for the rest of the paper. Section 4 introduces two heuristics dedicated to exact NMF
(SA and RBR) along with a hybridization. Section 5 compares these heuristics, showing that
they outperform multi-start strategies. In particular, RBR performs remarkably well and is
able to identify exact NMF’s very efficiently for several classes of matrices, while SA and
the hybridization strategy are able to compute an exact NMF for all considered matrices.
Section 5 also discusses the limitations of these approaches, which are unable to compute
exact NMF’s for large and difficult matrices (as expected by the computational complexity

123



J Glob Optim (2016) 65:369–400 373

of the problem). Finally, Sect. 6 discusses the use of these heuristics to better understand the
nonnegative rank. In particular, we propose new conjectures for the nonnegative rank of (i)
the Kronecker product of two nonnegative matrices, (ii) the slack matrices of regular and
generic n-gons, and (iii) a submatrix of the slack matrix of the correlation polytope.

To summarize, the main contributions of the paper are threefold:

– Design of two heuristics for exact NMF, along with a hybridization strategy, that outper-
form multi-start strategies. To the best of our knowledge, the only heuristic algorithms
previously designed forNMFwere developed in [32–34] and focused only on the (approx-
imate) NMF problem, and not its exact counterpart.

– Comparison of these heuristics with two simplemulti-start strategies on several classes of
nonnegative matrices for which exact factorizations are relevant for applications. This is
to the best of our knowledge the first time exact NMF algorithms are benchmarked on this
type of nonnegative matrices (previous work focused on randomly generated matrices,
or on machine learning data sets for which exactness of the factorization is not relevant).

– Several examples of the concrete use of these heuristics to address open theoretical
questions related to the nonnegative rank.

The code and data sets used in the paper have been made available online at

https://sites.google.com/site/exactnmf

We hope that the promising results shown by the methods introduced in this paper will
motivate researchers to further develop even faster and more effective heuristics for exact
NMF.

2 Benchmark nonnegative matrices for exact NMF

Throughout the paper, we will compare exact NMF algorithms on the following nonnegative
matrices (see Table 1):

– Linear Euclidean distance matrices Given a set of real numbers ai for 1 ≤ i ≤ n, a linear
Euclidean distance matrix (EDM) is defined as

Xa(i, j) = (ai − a j )
2 for 1 ≤ i ≤ n and 1 ≤ j ≤ n.

If at least three entries of a ∈ R
n are distinct, then rank(Xa) = 3. However, the non-

negative rank of linear EDM’s can be arbitrarily large: in fact, it was shown in [2] using
results from [14,30] that, if the entries of a are distinct,

rank+(Xa) ≥ min

{

k
∣
∣
∣

(
k

�k/2�
)

≥ n

}

≥ log2(n).

The lower boundwas later improved in [23].A subclass of linear EDM’s are the following

X[n](i, j) = (i − j)2 for 1 ≤ i ≤ n and 1 ≤ j ≤ n,

for which it was proved in [31, Th.1] that

rank+(X[2n]) ≤ rank+(X[n]) + 2.

If n is a power of two,we therefore have rank+(X[n]) ≤ 2 log2(n) since rank+(X[2]) = 2.
Combining this upper bound with the lower bound from [23] allows us to determine the
nonnegative rank for these matrices up to n = 16; see Table 1. However, as we will see
later on, it is non-trivial to compute exact NMF for these matrices.

123

https://sites.google.com/site/exactnmf


374 J Glob Optim (2016) 65:369–400

Table 1 Nonnegative matrices used to compare exact NMF heuristics

m n Rank(X) Rank+(X) Abbreviation

Linear EDM’s X (i, j) = (i − j)2,
for 1 ≤ i ≤ m, 1 ≤ j ≤ n

6 6 3 5 LEDM6

8 8 3 6 LEDM8

12 12 3 7 LEDM12

16 16 3 8 LEDM16

32 32 3 10∗ LEDM32

Slack matrix of the hexagon 6 6 3 5 6-G

Slack matrix of the heptagon 7 7 3 6 7-G

Slack matrix of the octagon 8 8 3 6 8-G

Slack matrix of the nonagon 9 9 3 7 9-G

Slack matrix of the hexadecagon 16 16 3 8 12-G

Slack matrix of the 32-gon 32 32 3 10 32-G

Slack matrix of the dodecahedron 20 12 4 9 20-D

Slack matrix of the 24-cell 24 24 5 12∗ 24-C

UDISJ (n = 4) 16 16 9 9 UDISJ4

UDISJ (n = 5) 32 32 18 18 UDISJ5

UDISJ (n = 6) 64 64 27 27 UDISJ6

Randomly generated matrices:
X = W H

Density = 0.1 50 50 10 10 RND1

Density = 0.3 50 50 10 10 RND3

The symbol ∗ means that the exact value of the nonnegative rank is still unknown, i.e., the best known lower
bound does not match the best known upper bound (for LEDM 32, the best lower bound is 9 while for 24-C
it is 10). However, after running our heuristics extensively on these matrices, we believe that all values of the
nonnegative ranks appearing in this table are correct

– Slack matrices The slack matrix of a polytopeP with m facets and n vertices is defined as
the m ×n nonnegative matrix SP whose (i, j)th entry SP (i, j) is equal to the slack of the
j th vertexwith respect to the i th facet. Formally, given the list of n vertices v j (1 ≤ j ≤ n)
and a facet description of the polytope P = {x ∈ R

k | A(i, :)x ≤ bi for 1 ≤ i ≤ m}, we
have that

SP (i, j) = b(i) − A(i, :)v j ≥ 0 for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

As recalled in the introduction, the nonnegative rank of the slack matrix of P is equal to
the extension complexity ofP . In this paper, we use slackmatrices of several well-known
classes of polytopes; see Table 1 (note that, unless stated otherwise, each mention of an
n-gon in this paper refers to the regular n-gon).

– Unique-disjointness matrices A unique-disjointness (UDISJ) matrix Xn ∈ {0, 1}2n×2n
of

order n is a matrix whose rows and columns are indexed by all vectors in a, b ∈ {0, 1}n

and which satisfies

Xn(a, b) =
⎧
⎨

⎩

1 if aT b = 0,
0 if aT b = 1,
? otherwise,

123



J Glob Optim (2016) 65:369–400 375

where ? means that the corresponding entry can be 0 or 1. UDISJ matrices have been suc-
cessfully used to prove lower bounds on the extension complexity of polytopes, because
their sparsity pattern can be found in submatrices of several interesting slack matrices;
see, e.g., [36] and the references therein. Note that UDISJ matrices also often appear
in the communication complexity literature.1 Many of the best lower bounds for UDISJ
matrices are based on the rectangle covering bound (see Sect. 1), and the class of matrices
we consider here is built on a similar principle (we choose not to use the UDISJ matrices
themselves as their nonnegative rank is not known exactly).
Given r rank-one binary (combinatorial) rectangles wkhT

k defined with some wk, hk ∈
{0, 1}2n

(1 ≤ k ≤ r ) covering Xn , we define

Yn =
r∑

k=1

wkhT
k ∈ {0, 1, . . . , r}2n×2n

.

The matrix Yn features the same sparsity pattern as Xn (that is, Yn(i, j) �= 0 ⇔
Xn(i, j) �= 0 for all i, j). We verified numerically that rank(Yn) = r and since these
matrices clearly admit a rank-r NMF, we can conclude that rank+(Yn) = r , and we will
use those matrices Yn for our benchmark; see Table 1.

– Randomly generated matrices It is standard in the NMF literature to use randomly gen-
erated matrices to compare algorithms (see, e.g., [38]), with the nice feature that the
resulting nonnegative rank of these matrices can be specified. For example, generating
each entry of W ∈ R

m×r and H ∈ R
r×n uniformly at random in the interval [0,1] and

computing X = W H generates, with probability one, a nonnegative matrix X such that
rank(X) = rank+(X) = r . In this paper, we have generated such matrices of dimensions
50-by-50with nonnegative rank 10.More precisely, thematrix W is generated as follows:

(i) generate W such that each column of the 50-by-10 matrix W has exactly one non-
zero entry whose location is randomly chosen and its value is picked uniformly at
random in the interval [0,1] (this ensures each rank-one factor to be non-zero), and

(ii) add a sparse uniformly distributed (in the interval [0,1]) random update to W , with
prespecified density d (that is, apply W = W + sprand(50,10,d)).

We use d = 0.1 and 0.3 as specified in Table 1. Matrix H is generated in the same
way. It turns out that these nonnegative products W H are relatively easy to factorize:
in fact, most initializations lead most NMF algorithms to an exact NMF. Hence these
matrices are not very useful to compare exact NMF heuristics ; nevertheless we include
them in our comparisons to illustrate this fact. (Note that this procedure may generate
rank-deficient matrices with a nonzero probability, in particular if two columns of W
have only one non-zero element at the same position. However, we have made sure that
the factors of the matrices selected for our experiments have full rank.) (Note also that
we did not simply generate each entry of W and H uniformly at random in the interval
[0,1] as it is usually done. The reason is that factoring the corresponding matrix W H
is usually even easier, because matrices W and H are then positive, which is known to
enlarge the set of exact factorizations—we refer the reader to [23] for more information
on the geometric interpretation of exact NMF. In particular, the solution of exact NMF
for M = W H is never unique—up to permutation and scaling—for positive matrices W
and H [19].)

1 Bob is given a, Alice b, and they have to decide whether aT b �= 0 while minimizing the number of bits
exchanged; see [41] for more details.

123



376 J Glob Optim (2016) 65:369–400

3 Designing heuristics: key ingredients and multi-start examples

Before presenting our proposed heuristics, we explore two multi-start strategies (Sect. 3.1).
This allows us to discuss some key aspects for comparing and designing such heuristics.
There are four main building blocks for our proposed heuristics:

– the initialization strategy (Sect. 3.2),
– the main algorithm, i.e. the heuristic constructing exact NMF’s after applying the ini-

tialization strategy, which relies on a local NMF algorithm (Sect. 3.1 for the multi-start
strategies, and Sect. 4 for our two proposed heuristics),

– the NMF algorithm used to improve solutions locally (Sect. 3.3),
– a final refinement step that will try to further improve the output of the main algorithm as

far as possible (ideally, until an exact NMF is found); see the description Algorithm FR,
which also relies on the local NMF algorithm.

This final refinement procedure will be applied to all solutions generated by the heuristics.
In this paper, we use a tolerance for the relative error equal to 10−6, that is, we will assume
that an exact NMF (W, H) of X is found as soon as ‖X−W H‖F‖X‖F

≤ 10−6. Algorithm FR runs
a local NMF algorithm as long as the relative error decreases at least by a predefined factor
α after every period of Δt seconds, otherwise it stops and returns the current solution. We
set the parameters to the following rather conservative values: Δt = 1s (which is quite large
for small matrices2) and α = 0.99; see “Appendix A” for some additional numerical results
comparing different values for Δt and α.

Algorithm FR Final Refinement(X, W, H, α,Δt)

Input: X ∈ R
m×n+ , W ∈ R

m×r+ , H ∈ R
r×n+ , 0 < α < 1, Δt .

1: i = 1, e0 = +∞, e1 = ‖X − W H‖F /‖X‖F .
2: while ei < αei−1 and ei > 10−6 do
3: i ← i + 1.
4: [W, H ] ← AlgoNMF(X, W, H, Δt). % See Sect. 3.3
5: ei ← ‖X − W H‖F /‖X‖F .
6: end while
7: return W ∈ R

m×r+ , H ∈ R
r×n+ , relative error ei .

Figure 1 shows how these blocks are arranged in our design of heuristics. Since it will
not be practical to display results for all possible combinations of heuristics (there will be
five in total), NMF algorithms (five) and initializations (five), along with the different tuning
parameters, another goal of this section is to select, for the rest of the paper, reasonable values
for the parameters of a good multi-start heuristic, along with an efficient local improvement
algorithm and initialization strategy that performs well on most examples. Note that although
we only report results for a subset of the possible combinations, our final choice of the
parameters has shown in further computations to be on average the most reliable (this will
also be the case for tuning the parameters of the proposed heuristics, namely simulated
annealing and the rank-by-rank heuristic; see Sect. 4).

Remark 2 (Are our exact NMF’s really exact?)At this point, it is important to insist on the fact
that all the numerical experiments performed in this paper are with floating point arithmetic.

2 For example, for a 50-by-50 matrix and r = 10, running standard multiplicative updates for 1 s allows to
perform about 10000 iterations on a standard laptop.

123



J Glob Optim (2016) 65:369–400 377

Fig. 1 Representation of the stream of the exchange of information between the different building blocks of
our exact NMF heuristics. Arrows represent the transfer of a solution

Hence, we consider a factorization exact if the relative error ‖X − W H‖F/‖X‖F is smaller
than some threshold (we choose 10−6) so that the computed factorizations are not exact but
high precision solutions. It is interesting to point out that all the solutions that we computed
with relative error smaller than 10−6 could be further improved with additional iterations of
Algorithm FR to 10−16 (which is the smallest possible using the standard Matlab precision).
Note that it is an open question whether the nonnegative rank over the rationals equals the
nonnegative rank over the reals; see, e.g., the discussion in [53]. Note that they were recently
shown to be different for the semidefinite rank, a generalization of the nonnegative rank [27];
see [15] and the very recent [49] for more details.

3.1 Two multi-start heuristics

In this section we propose two multi-start heuristics (Sects. 3.1.1 and 3.1.2).

3.1.1 Multi-start 1

The simplest multi-start strategy one can think of is to restart Algorithm FR with many
different initial matrices until an exact NMF is obtained; see Algorithm MS1. Note that this
heuristic is the one used in [23] to compute exact NMF of linear EDM’s. Note also that, in
view of Fig. 1, MS1 corresponds to a heuristic which is an ‘empty box’ that transfers directly
the solution from ‘Initializations’ to ‘Final refinement’.

Algorithm MS1Multi-Start 1(X, r, α,Δt)

Input: X ∈ R
m×n+ , r < min(m, n), 0 < α < 1, Δt , tol = 10−6.

1: (W0, H0) ← random initialization(m, n, r). % See Sect. 3.2
2: [W, H, e] ← Final Refinement(X, W0, H0, α,Δt).

3.1.2 Multi-start 2

ApplyingAlgorithmFRuntil convergence is uselesswhen the error does not converge to zero,
that is, when (W, H) converges to a local minimum with error strictly larger than zero. The
idea behind Algorithm MS2 is to keep the pairs (W, H) with the best potential to obtaining
an exact NMF, and therefore avoiding waste of computational time. The way we proceed is
to generate K different random initializations, apply N iterations of an NMF algorithm to

123



378 J Glob Optim (2016) 65:369–400

each pair and only apply Algorithm FR to the pair (W, H) with the smallest residual error
among those. This heuristic can also be found in [9]. Moreover, note that MS1 is a particular
case of MS2 with K = 1.

Algorithm MS2Multi-Start 2(X, r, α,Δt, K , N )

Input: X ∈ R
m×n+ , r < min(m, n), 0 < α < 1, Δt , K , N , tol = 10−6.

1: e = 1.
2: for i = 1 → K do
3: (W̃ , H̃) ← random initialization(m, n, r). % See Sect. 3.2
4: [W̃ , H̃ ] ← AlgoNMF(X, W̃ , H̃ , N ). % See Sect. 3.3
5: ẽ = ‖X − W̃ H̃‖F /‖X‖F .
6: if ẽ < e then
7: (W, H) ← (W̃ , H̃).
8: e ← ẽ.
9: end if
10: end for
11: [W, H ] ← Final Refinement(X, W, H, α,Δt).

3.1.3 Comparing the multi-start heuristics

Table 2 gives the computational results for the two multi-start heuristics with different para-
meters for MS2 (namely, N = 20, 40 and K = 100, 200). Throughout the paper (unless
stated otherwise), the settings are the following:

– We use the same randomly generated initial matrices to obtain a fair comparison between
the different runs (and for the results to be reproducible). In order to do so, wewill control
the random number generator of Matlab as follows: it is initialized with the value 1 (that
is, we execute rng(1)) and after each outer loop of the heuristics (for example, after
step 2 of MS1 and MS2), it is increased by one (that is, we execute rng(i+1) where i
is the number of iterations performed so far).

– We perform at most 100 runs of each heuristic. In order to reduce the computational
time of the numerical experiments, we stop testing a given heuristic as soon as (at least)
five exact NMF’s for a given nonnegative matrix have been found (this condition being
checked after every ten runs).

– The tables display the number of exact NMF’s found out of the number of runs performed
(for example, 6/10means that the algorithm found six exact NMF’s out of ten runs). They
also display in brackets the average time in seconds needed to compute a single exact
NMF. The best results in terms of average running time are underlined, and the best
heuristics in term of robustness (i.e. proportion of exact factorizations found) are in bold;
see the caption of Table 2 for more details.

We refer the reader to Sect. 3.3 for the local searchNMF algorithm selected and to Sect. 3.2
for the initialization strategy of matrices W and H . All tests are preformed using Matlab on
a PC Intel CORE i5-4570 CPU @3.2GHz × 4, with 7.7Go of RAM.

We observe in Table 2 that MS2 performs better than MS1, while the variants of MS2
perform similarly. Note that the computational times are rather similar: the reason is that the
considered matrices are rather small and performing N iterations of the NMF algorithm is
therefore relatively quick. In the remainder of the paper, we will use the parameters K = 200

123



J Glob Optim (2016) 65:369–400 379

Table 2 Comparison of the multi-start heuristics

MS1 MS2(100,20) MS2(200,20) MS2(100,40) MS2(200,40)

LEDM6 5/80 (35) 9/20 (4.7) 7/10 (3.2) 11/20 (4.4) 9/10 (3.2)

LEDM8 0/100 (∼) 6/50 (29.2) 6/40 (20) 5/50 (35.8) 6/40 (37)

LEDM12 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

LEDM16 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

LEDM32 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

6-G 8/30 (6.6) 10/10 (1.6) 10/10 (1.8) 10/10 (1.9) 10/10 (2.9)

7-G 8/20 (4.1) 9/10 (1.9) 10/10 (2.2) 9/10 (2.3) 10/10 (3)

8-G 5/60 (23.3) 6/10 (3.2) 9/10 (2.3) 9/10 (2.3) 10/10 (3)

9-G 7/40 (10.6) 7/10 (2.8) 6/10 (4.2) 6/10 (4.1) 8/10 (4.2)

16-G 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

32-G 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

20-D 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

24-C 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

UDISJ4 6/10 (2.4) 10/10 (1.8) 10/10 (2.1) 10/10 (2.2) 10/10 (3.4)

UDISJ5 5/30 (12.2) 5/30 (30.1) 5/30 (36.4) 9/20 (14.9) 5/10 (24.2)

UDISJ6 2/100 (119.5) 0/100 (∼) 0/100 (∼) 1/100 (1211.9) 0/100 (∼)

RND1 10/10 (1.1) 10/10 (1.9) 10/10 (2.3) 10/10 (2.6) 10/10 (4.1)

RND3 10/10 (1.1) 10/10 (2) 10/10 (2.4) 10/10 (2.5) 10/10 (4)

The ratio x/y means that x exact NMF’s have been found out of y runs of the heuristic, while the number
in brackets is the average running time for a heuristic to find a single exact NMF. Underlined: (i) the best
heuristic in terms of average running time to compute a single exact NMF, and (ii) any heuristic whose running
time to compute an exact NMF is at most 10% away from the best heuristic. In bold: (i) the best heuristic in
terms of number of exact NMF’s found out of a given number of runs, and (ii) any heuristic which is at most
10% away from the best heuristic. Similar conventions are used for subsequent Tables 3–6 and 8–16

and N = 20 for MS2 as it offers a good compromise between proportion of exact NMF’s
found and total computational time.

It is interesting to note that

– For randomly generated matrices, as already anticipated in Sect. 2, all heuristics are able
to identify an exact NMF for all runs.

– For some linear EDM’s (LEDM12 to LEDM32) and slack matrices (16-G to 24-C),
no multi-start strategy is able to identify an exact NMF. This observation is the main
motivation to develop more efficient heuristics for exact NMF: we had to run MS1 for
several hours (which means thousands of initializations) to find an exact rank-12 NMF
of 24-C (slack matrix of the 24-cell).

3.2 Selecting an initialization strategy

In this section, we describe several random initialization strategies. The most widely used
strategy is to generate each entry of the initial W and H factors uniformly at random in
the interval [0,1], a strategy which we refer to as RNDCUBE. As we will see, RNDCUBE
performs rather poorly, and we propose a new very effective random initialization strategy
which allows to explore the search domain in a much better way. In fact, the issue with

123



380 J Glob Optim (2016) 65:369–400

Table 3 Comparison of the different initialization strategies combined with multi-start 2

Sparse 00 Sparse 10 Sparse 01 Sparse 11 RNDCUBE

LEDM6 5/100 (54.8) 5/90 (50.6) 8/10 (2.7) 7/10 (3.2) 6/60 (25.1)

LEDM8 4/100 (113.3) 3/100 (133.5) 6/30 (23.5) 6/40 (20) 0/100 (∼)

LEDM12 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

LEDM16 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

LEDM32 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

6-G 10/10 (1.7) 10/10 (1.9) 10/10 (2.1) 10/10 (1.8) 10/10 (2)

7-G 10/10 (1.9) 7/10 (2.9) 10/10 (2.2) 10/10 (2.2) 10/10 (1.9)

8-G 6/10 (4.1) 6/10 (3.8) 9/10 (2.5) 9/10 (2.3) 5/30 (16.7)

9-G 8/20 (6.3) 5/30 (16.1) 5/10 (4.9) 6/10 (4.2) 5/40 (23.3)

16-G 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

32-G 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

20-D 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

24-C 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

UDISJ4 10/10 (2.2) 10/10 (2.1) 10/10 (2.3) 10/10 (2.1) 10/10 (2.1)

UDISJ5 7/20 (17.1) 6/20 (20.4) 6/30 (30.5) 5/30 (36.4) 7/20 (16.5)

UDISJ6 2/100 (465.9) 5/80 (146.3) 1/100 (921.8) 0/100 (∼) 0/100 (∼)

RND1 10/10 (2.3) 10/10 (2.4) 10/10 (2.8) 10/10 (2.3) 10/10 (2.1)

RND3 10/10 (2.5) 10/10 (2.3) 10/10 (2.2) 10/10 (2.4) 10/10 (2.3)

generating each entry of W and H uniformly at random in the interval [0,1] is that it only
generates dense matrices, while it is well-known that

(i) exact NMF solutions usually have many zero entries (see, e.g., the discussion in [21]),
and

(ii) the boundary of the feasible domain only contains sparse matrices ; hence generating
only dense initial matrices starts the exploration relatively far away from that boundary
where solutions are in general located.

The sparsest possible way to generate initial matrices with nonzero rank-one factors is
the following: we generate W and H so that each column or each row has a single non-zero
entry (whose position is chosen at random). This leads to four possible initializations denoted
SPARSEi j : i = 0 (resp. j = 0) means that W (resp. H ) has a single non-zero entry by row,
and i = 1 (resp. j = 1) means that W (resp. H ) has a single non-zero entry by column.

Table 3 reports the numerical results. We refer the reader to Sect. 3.3 for the local search
NMF algorithm selected. As explained above, RNDCUBE does not perform as well as the
sparse initialization strategies (for example, it is not able to find an exact NMF of LEDM8
while all other initialization strategies are). SPARSE11 has on average the best results and
we will therefore select it as the initialization strategy for MS2 for the remainder of the paper.

Remark 3 It may be surprising that for some symmetric matrices, SPARSE01 works signifi-
cantly better than SPARSE10 (for example, for LEDM6 and LEDM8) since those two cases
are readily seen to be equivalent via transposition (and the corresponding initial errors will
be the same in expectation). Symmetry is actually broken because the NMF algorithm used
(namely, A-HALS; see Sect. 3.3) first optimizes the factor W (one entry at a time, each entry

123



J Glob Optim (2016) 65:369–400 381

is optimized several times) while keeping H fixed (in the implementation provided by the
authors). Note that, to make sure our observation did not depend on the insufficient number of
experiments, we have rerun the same experiment with 1000 initializations for LEDM6 (resp.
LEDM8) and sparse01 found 702 (resp. 120) exact NMF’s out of these 1000 initializations,
while sparse10 found only 83 (resp. 14).

Interestingly, this also explains why SPARSE01 and SPARSE11 (resp. SPARSE00 and
SPARSE10) behave similarly: since the first matrix optimized by A-HALS is W , the initial
matrix H has more influence on the behaviour of A-HALS than the other initial factor.

Remark 4 Note that more sophisticated initialization strategies have been proposed for NMF,
see e.g., [6,56]. However these strategies are usually deterministic, hence cannot provide
multiple starts for our heuristics. Still, we have tested the strategies from [6,56] on matrices
from Table 1 and observed that they performed quite poorly, failing in most cases to compute
an exact NMF.

3.3 Selecting an NMF algorithm

In order to design heuristics for exact NMF, a local search heuristic is needed to improve a
given solution (i.e. pair of factors W and H ) locally. Most NMF algorithms could potentially
be used: in fact, most NMF algorithms are local search heuristics based on standard nonlin-
ear optimization schemes. In this section, we compare the following state-of-the-art NMF
algorithms in order to assess their performances for computing exact NMF’s:

1. (MU) The multiplicative updates (MU) algorithm of [39,40].
2. (A-MU) The accelerated MU from [22].
3. (HALS) The hierarchical alternating least squares (HALS) algorithm from [10,11].
4. (A-HALS) The accelerated HALS from [22].
5. (ANLS) The alternating nonnegative least squares algorithm of [38], which alternatively

optimizes W and H exactly using a block-pivot active set method; see also [37].

The code of the first four algorithms is available at https://sites.google.com/site/nicolasgillis/.
The code of ANLS was obtained from http://www.cc.gatech.edu/~hpark/.

The convergence speeds of theseNMFalgorithmswere previously comparedon real-world
image and document data sets, and A-HALS was shown to perform the best in most cases.
However, in this paper, we are interested in finding exact NMF’s of relatively small matrices.
Our goal in this paragraph is therefore to identify which algorithm is the best at identifying
exact NMF’s of such matrices when used as a subroutine for MS2; see Table 4. HALS and
A-HALS perform on average the best in terms of number of exact NMF’s found (note that A-
HALS is not much faster than HALS because the parameterΔt was set to a rather large value,
hence both algorithms are able to converge within the allowed time). ANLS performs rather
poorly because it runs into numerical problems for rank-deficient factorsW (and/or H ),which
appear as solutions of exact NMF’s of nonnegative matrices X with rank+(X) > rank(X)

[23]. MU and A-MU also perform poorly: because of their multiplicative nature, they cannot
deal very well with sparse solutions;3 see, e.g., the discussion in [22].

In light of these results, we select A-HALS as the NMF algorithm for the remainder of the
paper.

3 Note that we used the variants of MU and A-MU proposed [22] where zero entries of W and H are replaced
with a small positive number (we used 10−16) so that they can modify zero entries, and a subsequence is
guaranteed to converge to a stationary point [50].

123

https://sites.google.com/site/nicolasgillis/
http://www.cc.gatech.edu/~hpark/


382 J Glob Optim (2016) 65:369–400

Table 4 Comparison of NMF algorithms combined with multi-start 2

ANLS MU A-MU HALS A-HALS

LEDM6 0/100 (∼) 0/100 (∼) 0/100 (∼) 8/10 (2.8) 7/10 (3.2)

LEDM8 0/100 (∼) 0/100 (∼) 0/100 (∼) 5/30 (20.8) 6/40 (20)

LEDM12 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

LEDM16 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

LEDM32 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

6-G 0/100 (∼) 0/100 (∼) 0/100 (∼) 10/10 (2.1) 10/10 (1.8)

7-G 0/100 (∼) 0/100 (∼) 0/100 (∼) 10/10 (2.1) 10/10 (2.2)

8-G 0/100 (∼) 0/100 (∼) 0/100 (∼) 9/10 (2.4) 9/10 (2.3)

9-G 0/100 (∼) 1/100 (405.3) 5/70 (134.2) 5/10 (5.4) 6/10 (4.2)

16-G 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

32-G 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

20-D 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

24-C 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

UDISJ4 10/10 (13) 0/100 (∼) 0/100 (∼) 10/10 (2.4) 10/10 (2.1)

UDISJ5 5/100 (778.7) 0/100 (∼) 0/100 (∼) 5/40 (58.5) 5/30 (36.4)

UDISJ6 0/100 (∼) 0/100 (∼) 0/100 (∼) 1/100 (1105.4) 0/100 (∼)

RND1 5/20 (71.6) 3/100 (472.5) 5/10 (33.2) 10/10 (2.8) 10/10 (2.3)

RND3 10/10 (27.5) 8/20 (161.6) 7/10 (49.1) 10/10 (2.8) 10/10 (2.4)

4 Two heuristics for NMF

In this section, we propose two heuristics for NMF, along with a hybridization strategy.

4.1 Simulated annealing

The first heuristic we propose follows the widely used simulated annealing framework [45];
see Algorithm SA which we briefly describe here. As for the multi-start heuristics, SA
first generates an initial solution (W, H). SA will then explore the neighborhood of this
initial solution in a random fashion in the hope to find a better solution. A solution in the
neighborhood will be computed by repeating K times the following steps:

– select a small subset J of J rank-one factors W (:,J )H(J , :) at random, that is, generate
randomly J ⊂ {1, 2, . . . , r} such that |J | = J ,

– reinitialize these rank-one factors randomly (see Sect. 3.2),
– improve the corresponding solution locally (we will use N iterations of A-HALS; see

Sect. 3.3), and
– decide whether to keep the refined neighboring solution depending on its error and on

the current temperature, see step 14 of Algorithm SA (the higher the temperature, the
more likely it is for a solution to be accepted as the next iterate). Note that a solution
whose error is smaller than the error of the current solution is always kept. Hence an
important characteristic of SA is that it allows for solutions with higher errors to be
explored (although the probability for this to happen goes to zero as the temperature
decreases).

123



J Glob Optim (2016) 65:369–400 383

The procedure is repeated several times for several temperatures (from T0 to Tend with 20
logarithmically-spaced intermediate values ).We use the following values for the parameters:
initialization SPARSE10, T0 = 0.1 for the initial temperature (this means for example that
the initial temperature allows for a solution with relative error 10% higher than the current
solution to be accepted with probability exp(−1) ≈ 0.368, Tend = 10−4 for the final tem-
perature (this means for example that the final temperature allows for a solution with relative
error 0.1% higher than the current solution to be accepted with probability exp(−1)), J = 2,
N = 100 and K = 50; see “Appendix 2” for numerical experiments for different values
of the parameters. Note that the choice of these parameters was made within a reasonable
range of values. For example, J should not be taken too large: otherwise, it will incur too
much change in the factorization computed so far, and will therefore destroy most of the
information gained from the previous iterations. Temperatures T0 and Tend should be chosen
such that the probability to accept a solution with slightly higher objective function is not
too small, nor too high. It is important to point out that the initialization procedure is crucial:
in fact, SPARSE10 allows to compute exact NMF for all considered matrices while RND-
CUBE fails to do so and is much slower in the cases where it computes exact NMF’s; see
“Appendix 2”.

Algorithm SA Simulated Annealing(X, r, α,Δt, T0, Tend , β, K , N , J, tol)

Input: X ∈ R
m×n+ , r < min(m, n), 0 < α < 1, T0, Tend , 0 < β < 1, K , N , J , tol.

1: (W, H) ← random initialization(m, n, r). % See Sect. 3.2

2: e ← ‖X−W H‖F‖S‖F
.

3: emin ← e.
4: T ← T0
5: while T > Tend do
6: for i = 1 → K do
7: (W̃ , H̃) ← (W, H).
8: J ← pick randomly J indices in {1, 2, . . . , r}.
9: (W̃ (:,J ), H̃(J , :)) ← random initialization(m, n, J ).
10: [W̃ , H̃ ] ← AlgoNMF(X, W̃ , H̃ , N ).

11: ẽ ← ‖X−W̃ H̃‖F‖X‖F
.

12: Δ ← ẽ − e.
13: % U [0, 1] is the uniform distribution in [0, 1] (rand in Matlab)

14: if U [0, 1] < exp
(
−Δ

T

)
then

15: W ← W̃ , H ← H̃ , e ← ẽ.
16: if e < emin then
17: emin ← e.
18: (Wmin, Hmin) ← (W̃ , H̃).
19: end if
20: if emin < tol then
21: T = Tend ; break.
22: end if
23: end if
24: end for
25: T ← βT .
26: end while
27: Return [Wmin, Hmin].

123



384 J Glob Optim (2016) 65:369–400

4.2 Rank-by-rank heuristic

The second heuristic tries to construct recursively an exact NMF (W, H) of X as follows
(see Algorithm RBR):

– at the first step (k = 1), an optimal rank-one NMF (W1, H1) of X is computed. This
can be done for example using the truncated singular value decomposition using the
Perron-Frobenius and Eckart-Young theorems.

– At the kth step (2 ≤ k ≤ r ), a rank-k NMF solution is generated combining the rank-
(k − 1) NMF solution (Wk−1, Hk−1) computed at the (k − 1)th step with an additional
rank-one factor randomly generated. This solution is then locally improved using N steps
of an NMF algorithm. This procedure is repeated K times and the best solution is kept;
see Algorithm getRankPlusOne.

RBR will turn out to be a powerful exact NMF heuristic for some classes of matrices (such
as slack matrices).

Algorithm RBR Rank-by-Rank Heuristic(X, r, α,Δt, K , N )

Input: X ∈ R
m×n+ , r < min(m, n), 0 < α < 1, Δt , K , N .

1: [w1, σ1, h1] ← svds(X, 1). % See svds function of Matlab

2: (W1, H1) ←
(
|w1| , σ1

∣
∣
∣hT

1

∣
∣
∣
)

% This is an optimal nonnegative rank-one approximation of X

3: for k = 2 → r do
4: [Wk , Hk ] ← getRankPlusOne(X, Wk−1, Hk−1, K , N ).
5: end for

Algorithm getRankPlusOne getRankPlusOne(X, W, H, K , N )

Input: X ∈ R
m×n+ , W ∈ R

m×k−1+ , H ∈ R
k−1×n+ , K , N .

1: emin ← 1.
2: for j = 1 → K do

3:
(

W̃ (:, 1 : k − 1), H̃(1 : k − 1, :)
)

← (W, H).

4:
(

W̃ (:, k), H̃(k, :)
)

← random initialization(m, n, 1).

5: [W̃ , H̃ ] ← AlgoNMF(X, W̃ , H̃ , N ).

6: ẽ ← ‖X−W̃ H̃‖F‖X‖F
7: if ẽ < emin then
8: emin ← ẽ, Wmin ← W̃ , Hmin ← H̃ .
9: end if
10: end for
11: Return [Wmin, Hmin].

We will use SPARSE10 for the initialization, K = 10 and N = 50 which seem to be a
good compromise; see “Appendix 3” for tests of differents values.

4.3 Hybridization

When designing heuristics, a standard technique consists in using hybridization, that is, to
combine several heuristics. For example, instead of refining the solution computed by RBR

123



J Glob Optim (2016) 65:369–400 385

with the final refinement step, it is possible to call Simulated Annealing instead; in other
words, we propose to initialize SA with RBR. We refer to this heuristic as ‘Hybrid’.

5 Numerical experiments: comparing exact NMF heuristics

In this section, we compare MS1, MS2, SA, RBR and Hybrid, with a maximimum number
of 1000 runs, and stop the execution of an heuristic when 100 exact NMF’s were found
(checking this condition every 50 runs); see Table 5.

As already pointed out, the multi-start heuristics perform rather poorly and are not able
to compute even a single exact NMF in many cases. We observe that

– RBR is able to compute an exact NMF for all matrices but LEDM32, while SA andHybrid
are able to find an exact NMF for all matrices.

– In terms of robustness, Hybrid is the best as it is able to compute on average the most
exact NMF’s for a fixed number of runs.

– In terms of running times, RBR is on average the fastest, while Hybrid is comparatively
much slower.

Therefore, in practice, we would recommend to first run RBR as it computes, in many
cases, exact NMF’s the fastest. Moreover, for some matrices (e.g., slack matrices of regular
n-gons), it is very robust. Then, whenRBR fails, wewould recommend to runHybrid because
of its robustness: although it is slower, it is in general more likely to find exact NMF’s.

Table 5 Comparison of the different heuristics: MS1 and MS2 (Sect. 3.1), SA (Sect. 4.1), RBR (Sect. 4.2)
and Hybrid (Sect. 4.3)

MS1 MS2 SA RBR Hybrid

LEDM6 40/1000 (53.5) 112/150 (3.1) 100/100 (19.6) 100/100 (1.4) 100/100 (19)

LEDM8 0/1000 (∼) 107/600 (27.1) 100/100 (60.9) 100/100 (16.7) 148/150 (63.6)

LEDM12 0/1000 (∼) 0/1000 (∼) 119/200 (42.9) 107/650 (15.1) 103/150 (36.9)

LEDM16 0/1000 (∼) 0/1000 (∼) 100/250 (118.3) 100/550 (29.1) 121/250 (104.2)

LEDM32 0/1000 (∼) 0/1000 (∼) 14/1000 (2592.9) 0/1000 (∼) 28/1000 (1370.9)

6-G 108/700 (12.1) 100/100 (2.1) 100/100 (1.2) 100/100 (1.4) 100/100 (1.5)

7-G 104/350 (5.8) 100/100 (2.2) 100/100 (4.2) 100/100 (1.5) 100/100 (4.4)

8-G 61/1000 (32.2) 129/200 (3.8) 100/100 (15.4) 100/100 (1.5) 100/100 (15.3)

9-G 104/700 (12.8) 117/200 (4.6) 100/100 (22.9) 100/100 (1.6) 100/100 (23.2)

16-G 0/1000 (∼) 0/1000 (∼) 102/350 (91.6) 143/150 (1.9) 118/150 (34.2)

32-G 0/1000 (∼) 0/1000 (∼) 31/1000 (1086.8) 107/250 (6.6) 105/300 (97)

20-D 1/1000 (2021.1) 21/1000 (160.9) 100/100 (7.8) 129/150 (2.3) 100/100 (5.6)

24-C 0/1000 (∼) 0/1000 (∼) 100/100 (3.1) 119/200 (4.1) 100/100 (4.4)

UDISJ4 102/250 (4) 100/100 (2.4) 100/100 (1.2) 100/100 (1.9) 100/100 (1.9)

UDISJ5 104/850 (17.4) 102/500 (38) 100/100 (2.8) 100/100 (4.9) 100/100 (5.2)

UDISJ6 7/1000 (337.1) 8/1000 (1594.7) 100/100 (7.8) 112/450 (66.4) 100/100 (18.5)

RND1 148/150 (1.1) 100/100 (2.8) 100/100 (1.1) 100/100 (2.2) 100/100 (2.2)

RND3 100/100 (1.1) 100/100 (2.8) 100/100 (1.1) 100/100 (2.2) 100/100 (2.2)

123



386 J Glob Optim (2016) 65:369–400

Table 6 Results for hybrid on
larger n-gons

Hybrid

110-G 14/1000 (12050.3)

120-G 12/1000 (15556.4)

130-G 12/1000 (16462.7)

140-G 15/1000 (14002.6)

150-G 5/1000 (49277)

160-G 1/1000 (144803.1)

170-G 0/1000 (∼)

5.1 Limits of the heuristics for exact NMF

Computing exact NMF’s becomes more challenging when the dimensions and the nonnega-
tive rank of the matrix increases, as the computational complexity of the problem depends on
these dimensions (see the discussion in Sect. 1.2). To illustrate the limitations of the use of
heuristics to find exact NMF’s of larger matrices, Table 6 reports the computational results for
larger slack matrices of regular n-gons, with the factorization rank provided by conjecture 3.

Moreover, for LEDM of size 48-by-48 or larger, and for slack matrices of regular n-gons
with n ≥ 170, none of our heuristics is able to find a single exact NMF’s out of 1000 runs.

6 Using exact NMF heuristics for new insights on the nonnegative rank

In this section, we describe four important open questions related to the nonnegative rank,
and show how computing exact NMF’s of small matrices can help gain insights about them.

6.1 Kronecker product of two nonnegative matrices

In a recent Dagstuhl seminar [3], participants came up with the following conjecture: given
two nonnegative matrices A and B, the nonnegative rank of their Kronecker product is equal
to the product of their nonnegative rank, that is,

rank+(A ⊗ B) = rank+(A) rank+(B).

Note that this results holds for the usual rank, and that it is easy to show that rank+(A ⊗
B) ≤ rank+(A) rank+(B) (see also [54] for a short discussion). Hamza Fawzi used the
multi-start strategy MS1 to come up with the following counter example:

A =

⎛

⎜
⎜
⎝

1 0 1 a
0 1 0 1 − a
0 0 1 1 − a
1 1 0 a

⎞

⎟
⎟
⎠ ,

where a = 3/8 from [5] for which rank+(A) = 4 and rank+(A ⊗ A) ≤ 15. One may
therefore wonder whether the following is true

rank+(A ⊗ B) ≥ rank+(A) rank+(B) − 1 ?

123



J Glob Optim (2016) 65:369–400 387

It turns out that it is also incorrect. In fact, we have found a 4-by-4 nonnegative matrix A
with rank 3 and nonnegative rank 4 such that rank+(A ⊗ A) = 12 :

A =

⎛

⎜
⎜
⎝

1 + a 1 − a 1 − a 1 + a
1 − a 1 + a 1 + a 1 − a
1 + a 1 + a 1 − a 1 − a
1 − a 1 − a 1 + a 1 + a

⎞

⎟
⎟
⎠ ,

where a = √
2−0.9. Geometrically, the matrix A is the generalized slack matrix of a pair of

polytopes,4 namely two nested squares: the rows of A correspond to the edges of the outer
square and its columns to the vertices of the inner square; see [19] for more details. For√
2−1 < a ≤ 1, rank+(A) = 4. However, for a = 1 (which corresponds to the slack matrix

of the square, that is, the regular 4-gon), rank+(A⊗ A) = 16. Decreasing a sufficiently while
keeping a >

√
2 − 1 allows to decrease rank+(A ⊗ A) to 12 while keeping rank+(A) = 4.

The intuition behind this example is the following: decreasing a leaves more space between
the two squares although no triangle fits between the two (hence rank+(A) = 4). However,
this makes the search space of the exact NMF problem for A ⊗ A much larger, leading to the
existence of an exact NMF with smaller rank.

How the nonnegative rank of the Kronecker product between two matrices relates with
their nonnegative ranks remains an open question. This is an important open question, and,
as illustrated above, exact NMF algorithms are useful tools to address such questions. In light
of the above example, a new conjecture could be the following:

Conjecture 1 For any nonnegative matrix A,

rank+(A ⊗ A) ≥ rank+(A) rank(A).

6.2 Slack matrices of regular n-gons

As explained in the introduction, the nonnegative rank of the slack matrix Xn of the regular
n-gon is equal to its extension complexity, that is, to the minimum number of facets a higher
dimensional polytope requires to represent it after a linear projection. It can be shown that
rank+(Xn) ≥ ⌈

log2(2n + 2)
⌉
[25]. Ben-Tal and Nemirovski [4] gave an extension of regular

n-gons when n is a power of two (n = 2k for some k) with 2 log2(n) + 4 facets. They
used this construction to approximate the circle with regular n-gons which allowed them
to approximate second-order cone programs with linear programs. Another construction for
arbitrary n was proposed in [18] showing that rank+(Xn) ≤ 2

⌈
log2(n)

⌉
. However, the exact

value of rank+(Xn) is unknown (except for small n; see below).
We have run the Hybrid heuristic on these matrices for all n ≤ 78 and observe the

following:

Conjecture 2 The nonnegative rank of the slack matrix Xn of the regular n-gon is given by

rank+(Xn) =
{
2k − 1 for 2k−1 < n ≤ 2k−1 + 2k−2,

2k for 2k−1 + 2k−2 < n ≤ 2k .

Note that the conjecture is known to be true for n ≤ 9 as it matches a lower bound based on
the rectangle covering bound improved with additional rank constraints from [43].

4 The generalized slackmatrix of a pair of polytopes P (inner) and Q (outer) is defined as S(i, j) = bi −aT
i v j

where {x |bi − aT
i x ≥ 0} is the inequality defining the i th facet of Q and v j is the j th vertex of P; see, e.g.,

[29]. Note that the standard slack matrix corresponds to the particular case of equal inner and outer polytopes.

123



388 J Glob Optim (2016) 65:369–400

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

700

800

900

1000

n

# 
ex

ac
t N

M
F’

s 
fo

un
d 

ou
t o

f 1
00

0 
ru

ns
 o

f H
yb

rid

Fig. 2 Number of exact NMF found out of 1000 runs of Hybrid on regular n-gons and for the nonnegative
rank given in Conjecture 2

For all slack matrices with5 3 ≤ n ≤ 78, Hybrid was able to compute at least one exact
NMFmatching the nonnegative rank given inConjecture 2,while it was never able to compute
a single exact NMF with a smaller nonnegative rank (out of 1000 runs). Figure 2 displays
the number of exact NMF’s found out of 1000 initializations of Hybrid for the nonnegative
rank given in Conjecture 2.

It is interesting and quite natural to observe that, as n increases, Hybrid meets more and
more difficulty to compute an exact NMF of these slack matrices. This illustrates the limits of
heuristics to solve exact NMF problems for larger (and difficult) matrices; see also Sect. 5.1.

Observing the structure of the factorizations provided by our heuristics, authors in [52]
were recently able to provide a formal proof of an upper bound matching the nonnegative
rank of Conjecture 2. They also provide a matching lower bound for values of n less or
equal than 14 and between 21 and 24, which establishes the conjecture for those values.
Conjecture 2 remains open for all other values of n. This reinforces our claim that heuristics
for exact NMF are in fact very useful to prove/disprove conjectures on the nonnegative rank.

6.3 Generic n-gons

A n-gon is generic if the coordinates of its vertices are distinct and form a set that is alge-
braically independent over the rationals; see [18] for more details. It is known that the
nonnegative rank of the slack matrices Xn of generic n-gons satisfies

√
2n ≤ rank+(Xn) ≤

⌈
6n

7

⌉

.

The lower bound is due to [18], while the upper bound applies to any n-gon and is due to
Shitov [48] (it was also proved using different arguments in [44]). An important question is
to characterize the growth of the nonnegative rank of these slack matrices: is it proportional
to

√
n, n or something in between [26]? Actually very recent work by Shitov establishes

5 Because it requires a rather high computational cost for larger n, we stopped testing the conjecture at n = 78.
In fact, running this experiment on a regular laptop took about two weeks.

123



J Glob Optim (2016) 65:369–400 389

sublinearity of the extension complexity of polygons [47] (albeit with a rate that is extremely
close to linear).

As n increases, it becomes more and more difficult to generate generic n-gons (because it
is likely that a newly generated point belongs to the convex hull of the previously generated
points).

Therefore we used the following procedure. We generate random n-gons whose vertices
lie on the unit circle. To obtain polygons whose vertices are relatively well separated form
the convex hull generated by the other vertices,6 we subdivide the circle into n disjoint arcs
of the same length. Then, each arc is divided into four parts of the same length and we only
generate one point randomly into the two middle parts (uniformly distributed). This ensures
the angles between any two data points to be larger than π

n . Then, for each n, we generate
ten such random n-gons and run Hybrid with 1000 runs. Table 7 reports the minimum and
maximum number of exact NMF’s found among these ten matrices.

These results suggest for example that generic 12-gons have extension complexity equal
to 9 – which also suggests that all 12-gons have extension complexity smaller than or equal
to 9. More generally, these results lead us to the following conjecture

Conjecture 3 The nonnegative rank of the slack matrix Sn of any n-gon is bounded above
by

⌊ n+6
2

⌋
where �x� is the largest integer smaller than x, that is,

rank+(Sn) ≤
⌊

n + 6

2

⌋

,

and equality holds for 5 ≤ n ≤ 15.

Another open question is the following: For n fixed, are the nonnegative ranks of the slack
matrices of all generic n-gons equal to one another? These experiments suggest that the
answer is positive for n ≤ 15: in fact, in all cases we observe that either no exact NMF is
found for the ten randomly generated matrices, or at least some are found for all of them. For
n = 16, it is less clear whether this is true: we were only able to compute a rank-10 exact
NMF for two of the generated matrices. This might be because these matrices are not fully
generic, or because, for n ≥ 16, generic n-gons might have different extension complexities,
or because our heuristic fails to compute the exact NMF of such instances. We leave the
investigation of these issues for further research.

The validity of conjecture 3 would imply the following.

Corollary (of Conjecture 3) The nonnegative rank of any rank-3 nonnegative matrix X
satisfies

rank+(X) ≤
⌊
min(m, n) + 6

2

⌋

.

Sketch of proof This follows from the result in [48]. ��
6.4 Extension complexity of the correlation polytope

The convex hull of all n × n rank-one 0/1 matrices is called the correlation polytope, and we
denote its slack matrix COR(n). It was proved in [17] that there exists a positive constant C
for which rank+(COR(n)) ≥ 2Cn . This result was improved in [36] where it is shown that
rank+(COR(n)) ≥ 1.5n .

6 As a vertex gets closer and closer to the convex hull generated by the other vertices, it becomes numerically
harder and harder to decide whether or not it belongs to the convex hull.

123



390 J Glob Optim (2016) 65:369–400

Ta
bl
e
7

N
on
ne
ga
tiv

e
ra
nk

of
ra
nd
om

n-
go

ns
on

th
e
ci
rc
le
:
fo
r
a
gi
ve
n

n,
th
e
ta
bl
e
re
po

rt
s
th
e
m
in
im

um
an
d
m
ax
im

um
nu

m
be
r
of

ex
ac
t
N
M
F’
s
fo
un

d
by

H
yb

ri
d
ou

t
of

10
00

ru
ns

on
te
n
su
ch

n-
go

ns

R
/n

6
7

8
9

10
11

12
13

14
15

16
17

4 5
[0
,0
]

[0
,0
]

6
[1
00

0,
10

00
]

[4
63

,1
00

0]
[0
,0
]

[0
,0
]

7
[7
54

,8
97

]
[1
60

,3
53

]
[0
,0
]

[0
,0
]

8
[7
43

,8
73

]
[3
51

,4
43

]
[2
5,
48

]
[0
,0
]

[0
,0
]

9
[7
87

,8
58

]
[4
01

,5
46

]
[1
48

,1
90

]
[1
0,
19

]
[0
,0
]

[0
,0
]

[0
,0
]

10
[6
92

,8
62

]
[5
80

,6
65

]
[2
42

,3
89

]
[6
3,
11

1]
[5
,1
9]

[0
,1
]

[0
,0
]

11
[8
33

,9
02

]
[5
33

,7
26

]
[3
85

,5
40

]
[1
50

,2
47

]
[9
,8
2]

[5
,1
4]

12
[7
34

,8
74

]
[6
43

,7
66

]
[4
42

,6
31

]
[1
38

,3
65

]
[1
07

,2
04

]

13
[6
71

,8
24

]
[3
75

,6
74

]
[4
05

,5
17

]

14
[6
10

,8
30

]
[5
83

,7
34

]

15
[7
21

,8
29

]

123



J Glob Optim (2016) 65:369–400 391

Let us define the following 2n × 2n matrix, a special instance of UDISJ matrices (see
Sect. 2), for which rows and columns are indexed by vectors a, b ∈ {0, 1}n and such that

Mn(a, b) =
(
1 − aT b

)2
.

The matrix Mn is a submatrix of the slack matrix of the correlation polytope [17]. For
n = 3, 4, 5, 6, Hybrid was not able to compute any exact NMF with r = 2n − 1 after 1000
runs. This suggests the following conjecture.

Conjecture 4 The submatrix Mn of the slack matrix of the correlation polytope has full
nonnegative rank, that is,

rank+(Mn) = 2n .

This would imply that rank+(COR(n)) ≥ 2n.

(Note that the rank of Mn is equal to n(n+1)
2 + 1 for n ≤ 11. For higher n, the matrix is too

large to fit in memory.)

7 Conclusion and further research

We have proposed two new heuristics along with a hybridization for exact nonnegative
matrix factorization, and demonstrated that they outperform simpler multi-start strategies
when benchmarked on a variety of nonnegative matrices relevant for applications. On the
way we proposed a novel efficient initialization strategy, and observed that HALS and A-
HALS were suitable as local NMF algorithms when performing exact NMF.

Future research includes the development of new and more efficient heuristics. Also,
heuristics can be sensitive to their parameters, especially formatrices forwhich it is difficult to
compute an exact NMF. Hence potential future work also includes fine-tuning the parameters
depending on the problem at hand (size of the matrix, difficulty of the corresponding NMF
problem, etc.).

The heuristics presented here can readily be applied to find good local minima for the
approximate NMF problem (that is, to compute W H ≈ X ), which is particularly useful
for real-world applications such as document classification and hyperspectral unmixing.
Therefore, it would be an interesting direction for further research to fine-tune and compare
heuristics in this context.

So far, we have tested our algorithms on a limited number of nonnegative matrices. It
would be good in the future to have a larger library of nonnegative matrices at our disposal,
in order to better understand the behavior of the heuristics. With that goal in mind, we will
keep our library updated on https://sites.google.com/site/exactnmf and welcome submission
of nonnegative matrices, especially those for which computing an exact factorization is still
a challenge.

Finally, it is important to recall that, strictly speaking, factorizations presented in this paper
were not exact, because they were only computed up to machine precision; see Remark 2.
It would therefore also be useful to develop some rounding strategies to transform a high
accuracy solution (e.g., 10−16 precision) into an exact NMF, when possible. (This was for
example done manually for the example of Sect. 6.1 where rank+(A) = 4 and rank+(A ⊗
A) = 12.)

Acknowledgments The authorswould like to thank the reviewers and the editor for their insightful comments
which helped improve the paper.

123

https://sites.google.com/site/exactnmf


392 J Glob Optim (2016) 65:369–400

Appendix: Sensitivity to the parameters α and Δt

In this section, we show some numerical results to stress out that the heuristics are not too
sensitive (in terms of number of exact NMF’s found) to the parameters α and Δt of the local
search heuristic (Algorithm FR), as long as they are chosen sufficiently large; see Tables 8
and 9. This is the reason why we selected the rather conservative values of α = 0.99 and
Δt = 1 in this paper.

In practice however, it would be good to start the heuristics with smaller values for α and
Δt and increase them progressively if the heuristic fails to identify exact NMF’s: for easily
factorizable matrices (such as the randomly generated ones) it does not make sense to choose
large parameters, while for difficult matrices choosing α and Δt too small does not allow the
heuristics to find exact NMF’s because convergence of NMF algorithms can, in some cases,
be too slow.

Parameters for simulated annealing

Table 10 shows the performance of SA for different initialization strategies described in
Sect. 3.2 (for T0 = 0.1, Tend = 10−4, J = 2, N = 100 and K = 50): it appears that
SPARSE10 works on average the best hence we keep this initialization for SA. In particular,
it is interesting to notice that SPARSE10 is able to compute exact NMF’s of 32-G while the
other initializations have much more difficulties (only SPARSE00 finds one exact NMF).

Table 11 shows the performance for different values of Tend (for J = 2, N = 100 and
K = 50): it appears that the value Tend = 10−4 for the final temperature works well.

Table 8 Comparison of different values of α with Δt = 1 combined with multi-start 2

α = 0.9999 α = 0.99 α = 0.9 α = 0.5

LEDM6 8/10 (2.6) 7/10 (3.2) 8/10 (2.8) 8/10 (2.1)

LEDM8 5/30 (28.8) 6/40 (20) 5/30 (17.1) 5/30 (16.1)

LEDM12 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

LEDM16 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

LEDM32 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

6-G 10/10 (1.7) 10/10 (1.8) 10/10 (2.1) 10/10 (2)

7-G 10/10 (1.8) 10/10 (2.2) 10/10 (2.2) 10/10 (2.1)

8-G 9/10 (2.4) 9/10 (2.3) 9/10 (2.3) 9/10 (2.3)

9-G 5/10 (4.7) 6/10 (4.2) 5/10 (4.8) 5/10 (4.7)

16-G 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

32-G 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

20-D 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

24-C 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

UDISJ4 10/10 (2.4) 10/10 (2.1) 10/10 (2.4) 10/10 (2.4)

UDISJ5 6/20 (23.1) 5/30 (36.4) 6/40 (40.6) 3/100 (179.3)

UDISJ6 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

RND1 10/10 (2.2) 10/10 (2.3) 10/10 (2.6) 10/10 (2.5)

RND3 10/10 (2.7) 10/10 (2.4) 10/10 (2.2) 10/10 (2.7)

123



J Glob Optim (2016) 65:369–400 393

Table 9 Comparison of different values of Δt with α = 0.99 combined with multi-start 2

Δt = 0.001 Δt = 0.01 Δt = 0.05 Δt = 0.1 Δt = 1 Δt = 2

LEDM6 8/10 (1.5) 7/10 (1.7) 8/10 (1.5) 8/10 (1.5) 7/10 (3.2) 8/10 (4.4)

LEDM8 5/50 (12.6) 5/50 (13) 5/30 (8.6) 5/30 (9.8) 6/40 (20) 5/30 (33.4)

LEDM12 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

LEDM16 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

LEDM32 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

6-G 10/10 (1.2) 10/10 (1.1) 10/10 (1.1) 10/10 (1.2) 10/10 (1.8) 10/10 (3.1)

7-G 10/10 (1.2) 10/10 (1.2) 10/10 (1.2) 10/10 (1.3) 10/10 (2.2) 10/10 (3.1)

8-G 9/10 (1.4) 9/10 (1.4) 9/10 (1.4) 9/10 (1.4) 9/10 (2.3) 9/10 (3.5)

9-G 6/10 (2.3) 5/10 (2.7) 5/10 (2.7) 5/10 (2.8) 6/10 (4.2) 5/10 (8.4)

16-G 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

32-G 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

20-D 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

24-C 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

UDISJ4 10/10 (1.5) 10/10 (1.5) 10/10 (1.5) 10/10 (1.6) 10/10 (2.1) 10/10 (3.4)

UDISJ5 1/100 (606.2) 1/100 (614.9) 4/100 (153.6) 2/100 (306.3) 5/30 (36.4) 5/20 (37.5)

UDISJ6 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

RND1 10/10 (1.9) 10/10 (1.8) 10/10 (1.9) 10/10 (1.9) 10/10 (2.3) 10/10 (3.8)

RND3 10/10 (1.9) 10/10 (1.8) 10/10 (1.9) 10/10 (1.9) 10/10 (2.4) 10/10 (3.8)

Table 10 Comparison of the different initialization strategies combined with SA

Sparse 00 Sparse 10 Sparse 01 Sparse 11 RNDCUBE

LEDM6 10/10 (19.5) 10/10 (17) 10/10 (20.4) 10/10 (16.5) 10/10 (19.4)

LEDM8 10/10 (57.9) 10/10 (44.8) 10/10 (59) 9/10 (49.9) 10/10 (63.3)

LEDM12 9/10 (26.5) 6/10 (30) 11/20 (45.1) 8/10 (28) 10/20 (51)

LEDM16 7/20 (125.9) 11/20 (65.6) 5/10 (99.2) 6/20 (112.8) 6/20 (132.6)

LEDM32 5/90 (711.7) 3/100 (1016.9) 1/100 (3728.4) 2/100 (1447.5) 0/100 (∼)

6-G 10/10 (1.2) 10/10 (1.2) 10/10 (1.1) 10/10 (1.3) 10/10 (1.2)

7-G 10/10 (3.5) 10/10 (3.5) 9/10 (72.5) 10/10 (3.4) 10/10 (3.5)

8-G 10/10 (17.2) 10/10 (13.8) 10/10 (19.6) 10/10 (15.9) 10/10 (16.1)

9-G 10/10 (22.7) 10/10 (21.3) 10/10 (23) 10/10 (18) 10/10 (24.1)

16-G 6/20 (87.6) 8/20 (61.4) 7/40 (150.4) 5/60 (287.7) 6/40 (182.7)

32-G 0/100 (∼) 3/100 (999.5) 0/100 (∼) 0/100 (∼) 0/100 (∼)

20-D 10/10 (7.5) 10/10 (4.2) 10/10 (8.1) 10/10 (10) 10/10 (8)

24-C 10/10 (4.4) 10/10 (3.6) 10/10 (3.1) 10/10 (4.5) 10/10 (3.7)

UDISJ4 10/10 (1.2) 10/10 (1.2) 10/10 (1.1) 10/10 (1.1) 10/10 (1.1)

UDISJ5 10/10 (2.9) 10/10 (2.3) 10/10 (3) 10/10 (2.7) 10/10 (3.8)

UDISJ6 10/10 (8.3) 10/10 (8.1) 10/10 (52.4) 10/10 (13.5) 10/10 (43.9)

RND1 10/10 (1.1) 10/10 (1.1) 10/10 (1.1) 10/10 (1.1) 10/10 (1.1)

RND3 10/10 (1.1) 10/10 (1.1) 10/10 (1.1) 10/10 (1.1) 10/10 (1.1)

123



394 J Glob Optim (2016) 65:369–400

Table 11 Performance of simulated annealing for different values of Tend (J = 2, N = 100 and K = 50)

Tend = 10−2 Tend = 10−3 Tend = 10−4 Tend = 10−5 Tend = 10−6

LEDM6 10/10 (17.8) 10/10 (19) 10/10 (17) 10/10 (12.3) 10/10 (13.6)

LEDM8 10/10 (54.5) 10/10 (57) 10/10 (44.8) 10/10 (62.3) 9/10 (49.1)

LEDM12 6/60 (225.4) 6/20 (63.9) 6/10 (30) 5/10 (33) 7/10 (29.4)

LEDM16 5/100 (488.7) 5/50 (223) 11/20 (65.6) 5/10 (84.1) 6/20 (100.1)

LEDM32 0/100 (∼) 0/100 (∼) 3/100 (1016.9) 0/100 (∼) 2/100 (1561)

6-G 10/10 (1.2) 10/10 (1.2) 10/10 (1.2) 10/10 (1.2) 10/10 (1.2)

7-G 10/10 (3.9) 10/10 (3.8) 10/10 (3.5) 10/10 (3.9) 10/10 (4.2)

8-G 10/10 (16.5) 10/10 (17.4) 10/10 (13.8) 10/10 (11.4) 10/10 (13.4)

9-G 10/10 (21) 10/10 (17.2) 10/10 (21.3) 10/10 (12.7) 10/10 (15.8)

16-G 5/80 (352.4) 6/20 (66.3) 8/20 (61.4) 6/30 (97.4) 6/10 (23.7)

32-G 0/100 (∼) 0/100 (∼) 3/100 (999.5) 3/100 (931.3) 2/100 (1331.3)

20-D 10/10 (4.1) 10/10 (5.9) 10/10 (4.2) 10/10 (7.6) 10/10 (5.2)

24-C 10/10 (3.9) 10/10 (2.1) 10/10 (3.6) 10/10 (2.9) 10/10 (2.7)

UDISJ4 10/10 (1.2) 10/10 (1.2) 10/10 (1.2) 10/10 (1.1) 10/10 (1.2)

UDISJ5 10/10 (2.3) 10/10 (2.4) 10/10 (2.3) 10/10 (2.5) 10/10 (2.3)

UDISJ6 10/10 (9) 10/10 (9.4) 10/10 (8.1) 10/10 (7.7) 10/10 (8.6)

RND1 10/10 (1.1) 10/10 (1.1) 10/10 (1.1) 10/10 (1.1) 10/10 (1.1)

RND3 10/10 (1.1) 10/10 (1.1) 10/10 (1.1) 10/10 (1.1) 10/10 (1.1)

Table 12 shows the performance for different values of N and K , for Tend = 10−4 and
J = 2. It seems that K = 50 and N = 100 is a good compromise between number of exact
NMF’s found and computational time.

Table 13 shows the performance for different values of J (for Tend = 10−4, K = 50 and
N = 100), and shows that J = 2 performs the best.

Parameters for the rank-by-rank heuristic

Table 14 shows the performance ofRBR for the different initialization strategies (for N = 100
and K = 50): SPARSE10 works on average the best. As for SA, it allows to compute exact
NMF’s of 32-G (6/10) while all other initializations fail.

Table 15 gives the results for several values of the parameters K and N . It is interesting
to observe that when K gets larger, the heuristic performs rather poorly in some cases (e.g.,
for the UDISJ6 matrix). The reason is that when K increases, the heuristic tends to generate
similar solutions: the ones obtained with Algorithm getRankPlusOne initialized with the best
solution that can be obtained by combining the rank-(k − 1) solution with a rank-one one. In
other words, the search domain that can be explored by RBR is reduced when K increases.

Initialization for the hybridization

Again the best initialization strategy is SPARSE10. However, it is interesting to note that
Hybrid is less sensitive to initialization than SA and RBR. In fact, except for 32-G with

123



J Glob Optim (2016) 65:369–400 395

Table 12 Performance of simulated annealing for different values of K and N (Tend = 10−4 and J = 2)

N = 10 N = 50 N = 100 N = 10 N = 50 N = 100

K = 10 K = 20

LEDM6 6/10 (3.1) 10/10 (3.1) 10/10 (4.9) 8/10 (2.8) 10/10 (5) 10/10 (8.7)

LEDM8 7/20 (53.1) 7/10 (45) 8/10 (48) 9/10 (49) 10/10 (48) 10/10 (49.8)

LEDM12 5/80 (47.2) 7/20 (13.2) 5/30 (40.8) 5/30 (21.6) 5/10 (12.7) 6/10 (18.4)

LEDM16 5/70 (98.1) 5/50 (115.4) 5/80 (184.6) 5/30 (76.7) 6/30 (93.9) 5/20 (91.2)

LEDM32 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

6-G 10/10 (1.6) 10/10 (2.5) 10/10 (1.2) 10/10 (2) 10/10 (3.4) 10/10 (1.2)

7-G 7/10 (2.7) 10/10 (3) 10/10 (2.4) 9/10 (2.4) 10/10 (4.7) 10/10 (3.8)

8-G 10/10 (1.6) 10/10 (3.1) 10/10 (4.8) 10/10 (2.1) 10/10 (5) 10/10 (7.3)

9-G 8/10 (2.3) 7/10 (5.1) 10/10 (5.5) 8/10 (3) 10/10 (5.5) 10/10 (9.9)

16-G 5/30 (15.1) 7/60 (38.8) 5/40 (56.5) 5/30 (18.7) 6/20 (21.7) 5/20 (46)

32-G 1/100 (410.7) 0/100 (∼) 1/100 (895.7) 0/100 (∼) 2/100 (458.4) 2/100 (740)

20-D 6/10 (3.5) 8/10 (4.8) 9/10 (4.9) 5/10 (5.7) 7/10 (9.3) 9/10 (6.4)

24-C 8/10 (2.5) 9/10 (4.9) 10/10 (2.9) 8/10 (3.3) 8/10 (9.6) 9/10 (4.4)

UDISJ4 10/10 (1.7) 10/10 (1.3) 10/10 (1.2) 10/10 (2.4) 10/10 (1.4) 10/10 (1.2)

UDISJ5 10/10 (3.9) 10/10 (13.7) 10/10 (2.7) 10/10 (6.8) 10/10 (26.3) 10/10 (3.5)

UDISJ6 9/10 (6.9) 10/10 (22.9) 10/10 (7.1) 10/10 (11.4) 10/10 (42.3) 10/10 (8.8)

RND1 10/10 (1.9) 10/10 (1.3) 10/10 (1.1) 10/10 (2.7) 10/10 (1.3) 10/10 (1.1)

RND3 10/10 (1.9) 10/10 (1.1) 10/10 (1.1) 10/10 (2.7) 10/10 (1.1) 10/10 (1.1)

K = 50 K = 100

LEDM6 8/10 (4.6) 10/10 (11.1) 10/10 (17) 10/10 (5.9) 10/10 (19) 10/10 (38.4)

LEDM8 9/10 (44) 9/10 (59.4) 10/10 (44.8) 9/10 (49.4) 10/10 (62.1) 10/10 (71.5)

LEDM12 6/20 (15.4) 6/10 (23) 6/10 (30) 5/20 (31.5) 7/10 (33.8) 9/10 (55.9)

LEDM16 7/60 (103.5) 5/20 (100.9) 11/20 (65.6) 6/40 (116.4) 7/10 (81.2) 6/10 (156)

LEDM32 0/100 (∼) 3/100 (706.4) 3/100 (1016.9) 1/100 (1318) 5/70 (571.8) 5/70 (1049)

6-G 10/10 (3.5) 10/10 (2.7) 10/10 (1.2) 10/10 (5.4) 10/10 (3.9) 10/10 (1.2)

7-G 10/10 (3.7) 10/10 (9.3) 10/10 (3.5) 10/10 (5.9) 10/10 (18.2) 10/10 (4.5)

8-G 10/10 (3.8) 10/10 (11) 10/10 (13.8) 10/10 (5.9) 10/10 (21.1) 10/10 (28)

9-G 9/10 (4.4) 10/10 (11.8) 10/10 (21.3) 9/10 (7.1) 10/10 (23.3) 10/10 (42.4)

16-G 6/20 (16.3) 9/20 (31.5) 8/20 (61.4) 10/20 (14.4) 9/20 (58.7) 8/10 (63.6)

32-G 2/100 (341.1) 3/100 (606.6) 3/100 (999.5) 3/100 (330.4) 5/60 (405.1) 5/40 (522.4)

20-D 10/10 (4.4) 10/10 (14.3) 10/10 (4.2) 9/10 (8.4) 10/10 (27.7) 10/10 (11.8)

24-C 10/10 (5) 10/10 (17.1) 10/10 (3.6) 10/10 (8.7) 10/10 (30.5) 10/10 (4.2)

UDISJ4 10/10 (4.4) 10/10 (1.3) 10/10 (1.2) 10/10 (7.4) 10/10 (1.4) 10/10 (1.2)

UDISJ5 10/10 (15.5) 10/10 (55.6) 10/10 (2.3) 10/10 (28.6) 10/10 (98.7) 10/10 (3.5)

UDISJ6 10/10 (27.4) 10/10 (63.5) 10/10 (8.1) 10/10 (48.5) 10/10 (131.5) 10/10 (11.3)

RND1 10/10 (5.1) 10/10 (1.3) 10/10 (1.1) 10/10 (8.5) 10/10 (1.3) 10/10 (1.1)

RND3 10/10 (5.1) 10/10 (1.1) 10/10 (1.1) 10/10 (8.5) 10/10 (1.1) 10/10 (1.1)

123



396 J Glob Optim (2016) 65:369–400

Table 13 Performance of simulated annealing for different values of J (Tend = 10−4, K = 50 and N = 100)

|J | = 1 |J | = 2 |J | = 3 |J | = 4

LEDM6 10/10 (20.5) 10/10 (17) 10/10 (20.3) 10/10 (19.4)

LEDM8 10/10 (54.4) 10/10 (44.8) 10/10 (64.4) 10/10 (61.3)

LEDM12 10/10 (25) 6/10 (30) 5/10 (50.3) 7/20 (67.7)

LEDM16 5/10 (100.9) 11/20 (65.6) 7/20 (115.1) 6/20 (99.4)

LEDM32 1/100 (3655.9) 3/100 (1016.9) 1/100 (3688) 2/100 (1798)

6-G 10/10 (1.2) 10/10 (1.2) 10/10 (1.2) 10/10 (1.2)

7-G 10/10 (2.2) 10/10 (3.5) 10/10 (5.1) 10/10 (10.4)

8-G 10/10 (17.5) 10/10 (13.8) 10/10 (16.5) 10/10 (20.4)

9-G 10/10 (19.5) 10/10 (21.3) 10/10 (22.8) 10/10 (23.5)

16-G 6/10 (44.5) 8/20 (61.4) 5/20 (108.2) 6/60 (268.2)

32-G 5/90 (613.1) 3/100 (999.5) 0/100 (∼) 1/100 (3377)

20-D 9/10 (8) 10/10 (4.2) 10/10 (8.6) 10/10 (19.8)

24-C 10/10 (4) 10/10 (3.6) 10/10 (4.8) 10/10 (6.5)

UDISJ4 10/10 (1.3) 10/10 (1.2) 10/10 (1.2) 10/10 (1.2)

UDISJ5 10/10 (3.7) 10/10 (2.3) 10/10 (2.8) 10/10 (3)

UDISJ6 10/10 (11) 10/10 (8.1) 10/10 (6.8) 10/10 (8.1)

RND1 10/10 (1.1) 10/10 (1.1) 10/10 (1.2) 10/10 (1.1)

RND3 10/10 (1.1) 10/10 (1.1) 10/10 (1.1) 10/10 (1.1)

Table 14 Comparison of the different initialization strategies combined with RBR

Sparse 00 Sparse 10 S01 Sparse 11 RNDCUBE

LEDM6 10/10 (1.4) 10/10 (1.4) 10/10 (1.4) 10/10 (1.4) 10/10 (1.4)

LEDM8 10/10 (14.6) 10/10 (15.8) 10/10 (12.3) 10/10 (20.3) 10/10 (11.7)

LEDM12 5/30 (14.8) 7/30 (10.1) 6/20 (7.8) 7/30 (10.3) 5/20 (9.4)

LEDM16 5/50 (40.4) 5/30 (29.5) 6/40 (31.5) 5/30 (29.5) 6/10 (17.9)

LEDM32 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

6-G 10/10 (1.4) 10/10 (1.4) 10/10 (1.4) 10/10 (1.4) 10/10 (1.4)

7-G 10/10 (1.5) 10/10 (1.5) 10/10 (1.5) 10/10 (1.5) 10/10 (1.5)

8-G 10/10 (1.5) 10/10 (1.5) 10/10 (1.5) 10/10 (1.5) 10/10 (1.5)

9-G 10/10 (1.6) 10/10 (1.6) 10/10 (1.6) 10/10 (1.6) 10/10 (1.6)

16-G 10/10 (1.8) 10/10 (1.8) 9/10 (2.1) 5/10 (4.3) 6/20 (8.1)

32-G 7/20 (8.4) 8/20 (7.1) 5/40 (26.7) 7/20 (9.4) 1/100 (421.1)

20-D 8/10 (2.5) 9/10 (2.1) 10/10 (1.9) 9/10 (2.2) 8/10 (2.3)

24-C 7/10 (3.4) 8/10 (2.9) 8/10 (2.9) 8/10 (3) 12/20 (4.1)

UDISJ4 10/10 (1.9) 10/10 (1.9) 10/10 (1.9) 10/10 (1.9) 8/10 (2.3)

UDISJ5 10/10 (5) 10/10 (4.8) 10/10 (4.9) 10/10 (4.9) 9/10 (5.5)

UDISJ6 6/20 (57.5) 6/40 (116.8) 7/10 (23.7) 8/10 (21) 5/30 (106)

RND1 10/10 (2.2) 10/10 (2.2) 10/10 (2.2) 10/10 (2.2) 10/10 (2.2)

RND3 10/10 (2.2) 10/10 (2.2) 10/10 (2.2) 10/10 (2.2) 10/10 (2.2)

123



J Glob Optim (2016) 65:369–400 397

Table 15 Performance of the rank-by-rank heuristic for different values of K and N

N = 10 N = 50 N = 100 N = 10 N = 50 N = 100

K = 1 K = 10

LEDM6 8/30 (6.7) 7/10 (2) 5/10 (3.2) 10/10 (1.2) 10/10 (1.4) 10/10 (1.7)

LEDM8 6/10 (19.4) 8/20 (13.6) 6/10 (9.8) 10/10 (38.5) 10/10 (15.8) 10/10 (13.1)

LEDM12 5/50 (27.8) 5/20 (10.2) 7/20 (6.2) 5/80 (33.8) 7/30 (10.1) 10/10 (2.2)

LEDM16 0/100 (∼) 5/60 (59.1) 5/40 (37.2) 5/100 (73.8) 5/30 (29.5) 6/40 (36.4)

LEDM32 1/100 (545.3) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

6-G 5/10 (3.1) 5/10 (2.8) 6/20 (4) 10/10 (1.2) 10/10 (1.4) 10/10 (1.7)

7-G 12/20 (2.4) 7/10 (2) 6/10 (2.1) 10/10 (1.2) 10/10 (1.5) 10/10 (1.9)

8-G 10/10 (1.1) 10/10 (1.1) 10/10 (1.2) 10/10 (1.2) 10/10 (1.5) 10/10 (1.9)

9-G 5/10 (3.3) 11/20 (2.8) 6/10 (2.6) 10/10 (1.2) 10/10 (1.6) 10/10 (2.2)

16-G 5/70 (29.7) 6/30 (10.2) 5/50 (24.3) 8/10 (1.8) 10/10 (1.8) 10/10 (2.4)

32-G 1/100 (316.6) 2/100 (153.4) 5/100 (61.2) 7/30 (9.8) 8/20 (7.1) 11/20 (6.8)

20-D 7/20 (4.9) 5/30 (11.5) 8/30 (6.4) 10/10 (1.3) 9/10 (2.1) 8/10 (3.4)

24-C 5/70 (28.1) 7/20 (3.9) 5/50 (15.1) 6/10 (2.9) 8/10 (2.9) 8/10 (4.6)

UDISJ4 9/10 (1.3) 9/10 (1.3) 9/10 (1.4) 10/10 (1.3) 10/10 (1.9) 9/10 (3)

UDISJ5 8/10 (1.8) 9/10 (1.7) 6/10 (3.2) 10/10 (2.1) 10/10 (4.8) 10/10 (8.4)

UDISJ6 7/10 (2.6) 7/10 (4) 13/20 (6.9) 7/20 (15.1) 6/40 (116.8) 7/30 (149.7)

RND1 10/10 (1.1) 10/10 (1.2) 10/10 (1.3) 10/10 (1.3) 10/10 (2.2) 10/10 (3.1)

RND3 10/10 (1.1) 10/10 (1.2) 10/10 (1.3) 10/10 (1.3) 10/10 (2.2) 10/10 (3.1)

K = 50 K = 100

LEDM6 10/10 (1.4) 10/10 (2.7) 10/10 (4.1) 10/10 (1.9) 10/10 (4.4) 10/10 (7.7)

LEDM8 10/10 (20.8) 10/10 (16) 10/10 (28.8) 10/10 (19.2) 10/10 (16.5) 10/10 (34.7)

LEDM12 6/50 (21.2) 9/20 (10.1) 10/10 (6.2) 6/40 (22) 6/10 (11.7) 10/10 (12.3)

LEDM16 5/50 (44.2) 7/50 (53.2) 5/50 (98.7) 6/20 (27.1) 5/70 (139.3) 6/70 (197.6)

LEDM32 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

6-G 10/10 (1.4) 10/10 (2.7) 10/10 (4.1) 10/10 (1.9) 10/10 (4.3) 10/10 (7.6)

7-G 10/10 (1.6) 10/10 (3.2) 10/10 (5) 10/10 (2.1) 10/10 (5.4) 10/10 (9.6)

8-G 10/10 (1.6) 10/10 (3.2) 10/10 (5.1) 10/10 (2.1) 10/10 (5.4) 10/10 (9.7)

9-G 10/10 (1.7) 10/10 (3.8) 10/10 (6.2) 10/10 (2.4) 10/10 (6.6) 10/10 (12)

16-G 10/10 (1.9) 10/10 (4.5) 10/10 (7.5) 10/10 (2.7) 10/10 (8) 10/10 (14.9)

32-G 5/20 (14.4) 7/10 (9.3) 10/10 (10.8) 6/50 (39.4) 9/10 (12.8) 10/10 (21.7)

20-D 10/10 (2) 8/10 (6.4) 9/10 (9.7) 10/10 (3) 9/10 (10.3) 5/10 (34.7)

24-C 9/20 (6.9) 10/10 (7.6) 9/10 (14.7) 7/20 (13.5) 10/10 (13.8) 9/10 (29.8)

UDISJ4 10/10 (2) 10/10 (5.1) 8/10 (10.9) 10/10 (3) 10/10 (9) 7/40 (98.6)

UDISJ5 8/10 (7) 10/10 (19.9) 10/10 (35.8) 5/10 (20.4) 10/10 (38.2) 10/10 (74.8)

UDISJ6 5/40 (156.2) 0/100 (∼) 0/100 (∼) 5/40 (293.2) 0/100 (∼) 0/100 (∼)

RND1 10/10 (2.4) 10/10 (6.4) 10/10 (12.2) 10/10 (3.7) 10/10 (12.4) 10/10 (22.4)

RND3 10/10 (2.4) 10/10 (6.4) 10/10 (12.3) 10/10 (3.7) 10/10 (12.4) 10/10 (22.3)

123



398 J Glob Optim (2016) 65:369–400

Table 16 Comparison of the different initialization strategies combined with the hybridization between RBR
and SA

Sparse 00 Sparse 10 Sparse 01 Sparse 11 RNDCUBE

LEDM6 10/10 (20.1) 10/10 (20.4) 10/10 (20.2) 10/10 (20) 10/10 (20.1)

LEDM8 10/10 (59.7) 10/10 (59.2) 10/10 (53) 10/10 (65.9) 10/10 (61.6)

LEDM12 7/10 (36) 5/10 (50.8) 5/10 (51) 7/10 (36.7) 8/10 (31.2)

LEDM16 5/10 (102.6) 8/20 (103.1) 11/20 (91.3) 5/10 (69.8) 7/10 (74.5)

LEDM32 4/100 (946.2) 2/100 (1851.1) 1/100 (3796.3) 0/100 (∼) 0/100 (∼)

6-G 10/10 (1.5) 10/10 (1.4) 10/10 (1.5) 10/10 (1.5) 10/10 (1.4)

7-G 10/10 (4.5) 10/10 (3.1) 10/10 (2.5) 10/10 (3.5) 10/10 (3.1)

8-G 10/10 (14.7) 10/10 (13.4) 10/10 (19.4) 10/10 (20.2) 10/10 (19.2)

9-G 10/10 (22.9) 10/10 (22) 10/10 (23.8) 10/10 (24.1) 10/10 (23.9)

16-G 10/10 (26.4) 7/10 (36.7) 8/10 (34.6) 6/10 (45.6) 5/20 (109.3)

32-G 5/10 (67.4) 5/10 (66.9) 6/30 (176.6) 6/40 (235.9) 0/100 (∼)

20-D 10/10 (10.1) 10/10 (4.4) 10/10 (10.3) 10/10 (6.7) 10/10 (5.7)

24-C 10/10 (2.7) 10/10 (5.6) 10/10 (3.1) 10/10 (4.1) 10/10 (2.9)

UDISJ4 10/10 (1.9) 10/10 (1.9) 10/10 (1.9) 10/10 (1.9) 10/10 (1.9)

UDISJ5 10/10 (5.1) 10/10 (5) 10/10 (5.3) 10/10 (5.3) 10/10 (5.8)

UDISJ6 10/10 (18.6) 10/10 (21.2) 10/10 (19.3) 10/10 (17.2) 10/10 (21.4)

RND1 10/10 (2.2) 10/10 (2.2) 10/10 (2.3) 10/10 (2.2) 10/10 (2.2)

RND3 10/10 (2.2) 10/10 (2.2) 10/10 (2.2) 10/10 (2.2) 10/10 (2.2)

RNDCUBE and LEDM32 with SPARSE01, it was able to compute exact NMF’s in all
situations. In other words, as shown in Table 16, Hybrid is a more robust strategy than RBR
and SA although it is computationally more expensive on average.

References

1. Arora, S., Ge, R., Kannan, R., Moitra, A.: Computing a nonnegative matrix factorization—provably. in
Proceedings of the 44th Symposium on Theory of Computing, STOC ’12, pp. 145–162, (2012)

2. Beasley, L., Laffey, T.: Real rank versus nonnegative rank. Linear Algebra Appl. 431(12), 2330–2335
(2009)

3. Beasley, L., Lee, T., Klauck, H., Theis, D.: Dagstuhl report 13082: communication complexity, linear
optimization, and lower bounds for the nonnegative rank of matrices (2013). arXiv:1305.4147

4. Ben-Tal, A., Nemirovski, A.: On polyhedral approximations of the second-order cone. Math. Oper. Res.
26(2), 193–205 (2001)

5. Bocci, C., Carlini, E., Rapallo, F.: Perturbation of matrices and nonnegative rank with a view toward
statistical models. SIAM J. Matrix Anal. Appl. 32(4), 1500–1512 (2011)

6. Boutsidis, C., Gallopoulos, E.: SVD based initialization: a head start for nonnegative matrix factorization.
Pattern Recognit. 41(4), 1350–1362 (2008)

7. Brown, C.W.: Qepcad b: a program for computing with semi-algebraic sets using cads. ACM SIGSAM
Bull. 37(4), 97–108 (2003)

8. Carlini, E., Rapallo, F.: Probability matrices, non-negative rank, and parameterization of mixture models.
Linear Algebra Appl. 433, 424–432 (2010)

9. Cichocki, A., Amari, S.-I., Zdunek, R., Phan, A.: Non-negative Matrix and Tensor Factorizations: Appli-
cations to Exploratory Multi-way Data Analysis and Blind Source Separation. Wiley, London (2009)

10. Cichocki, A., Phan, A.H.: Fast local algorithms for large scale nonnegative matrix and tensor factoriza-
tions. IEICE Trans. Fundam. Electron. E92–A(3), 708–721 (2009)

123

http://arxiv.org/abs/1305.4147


J Glob Optim (2016) 65:369–400 399

11. Cichocki, A., Zdunek, R., Amari, S.-i.: Hierarchical ALS Algorithms for Nonnegative Matrix and 3D
Tensor Factorization. Lecture notes in computer science (Springer, 2007), pp. 169–176

12. Cohen, J., Rothblum, U.: Nonnegative ranks, decompositions and factorization of nonnegative matrices.
Linear Algebra Appl. 190, 149–168 (1993)

13. Conforti, M., Cornuéjols, G., Zambelli, G.: Extended formulations in combinatorial optimization. 4OR
A Q.J. Oper. Res. 10(1), 1–48 (2010)

14. de Caen, D., Gregory, D.A., Pullman, N.J.: The boolean rank of zero-one matrices. in Proceedings of
Third Caribbean Conference on Combinatorics and Computing (Barbados), pp. 169–173 (1981)

15. Fawzi, H., Gouveia, J., Parrilo, P., Robinson, R., Thomas, R.: Positive Semidefinite Rank (2014).
arXiv:1407.4095

16. Fiorini, S., Kaibel, V., Pashkovich, K., Theis, D.: Combinatorial bounds on nonnegative rank and extended
formulations. Discret. Math. 313(1), 67–83 (2013)

17. Fiorini, S., Massar, S., Pokutta, S., Tiwary, H., de Wolf, R.: Linear Versus Semidefinite Extended Formu-
lations: Exponential Separation and Strong Lower Bounds. in Proceedings of the Forty-Fourth Annual
ACM Symposium on Theory of Computing, ACM, pp. 95–106, (2012)

18. Fiorini, S., Rothvoss, T., Tiwary, H.: Extended formulations for polygons. Discret. Comput. Geom. 48(3),
658–668 (2012)

19. Gillis, N.: Sparse and unique nonnegativematrix factorization through data preprocessing. J.Mach. Learn.
Res. 13(Nov), 3349–3386 (2012)

20. Gillis, N.: Thewhy and howof nonnegativematrix factorization. In: Suykens, J., Signoretto,M., Argyriou,
A. (eds.) Regularization, Optimization, Kernels, and Support Vector Machines. Machine Learning and
Pattern Recognition Series. Chapman & Hall/CRC, London (2014)

21. Gillis, N., Glineur, F.: Using underapproximations for sparse nonnegative matrix factorization. Pattern
Recognit. 43(4), 1676–1687 (2010)

22. Gillis, N., Glineur, F.: Acceleratedmultiplicative updates and hierarchicalALS algorithms for nonnegative
matrix factorization. Neural Comput. 24(4), 1085–1105 (2012)

23. Gillis, N., Glineur, F.: On the geometric interpretation of the nonnegative rank. Linear Algebra Appl.
437(11), 2685–2712 (2012)

24. Gillis, N., Vavasis, S.: Semidefinite programming based preconditioning for more robust near-separable
nonnegative matrix factorization. SIAM J.Optim. 25, 677–698 (2015)

25. Goemans, M.: Smallest Compact Formulation for the Permutahedron (2009). http://math.mit.edu/
~goemans/PAPERS/permutahedron

26. Gouveia, J.: Personnal Comunication (2014)
27. Gouveia, J., Fawzi, H., Robinson, R.: Rational and Real Positive Srank can be Different (2014).

arXiv:1404.4864
28. Gouveia, J., Parrilo, P., Thomas, R.: Lifts of convex sets and cone factorizations. Math. Oper. Res. 38(2),

248–264 (2013)
29. Gouveia, J., Robinson, R., Thomas, R.: Worst-case Results for Positive Semidefinite Rank (2013).

arXiv:1305.4600
30. Gregory,D.A., Pullman,N.J.: Semiring rank: boolean rank andnonnegative rank factorizations. J.Combin.

Inform. Syst. Sci. 8(3), 223–233 (1983)
31. Hrubeš, P.: On the nonnegative rank of distance matrices. Inf. Process. Lett. 112(11), 457–461 (2012)
32. Janecek, A., Tan, Y.: Iterative improvement of the multiplicative update NMF algorithm using nature-

inspired optimization. in Seventh International Conference on Natural Computation vol. 3 (2011), pp.
1668–1672

33. Janecek, A., Tan, Y.: Swarm intelligence for non-negative matrix factorization. Int. J. Swarm Intell. Res.
2(4), 12–34 (2011)

34. Janecek, A., Tan, Y.: Using population based algorithms for initializing nonnegative matrix factorization.
Adv. Swarm Intell. 6729, 307–316 (2011)

35. Kaibel, V.: Extended formulations in combinatorial optimization. Optima 85, 2–7 (2011)
36. Kaibel, V., Weltge, S.: A Short Proof that the Extension Complexity of the Correlation Polytope Grows

Exponentially (2013). arXiv:1307.3543
37. Kim, J., He, Y., Park, H.: Algorithms for nonnegative matrix and tensor factorizations: a unified view

based on block coordinate descent framework. J. Global Optim. 58(2), 285–319 (2014)
38. Kim, J., Park,H.: Fast nonnegativematrix factorization: an active-set-likemethod and comparisons. SIAM

J. Sci. Comput. 33(6), 3261–3281 (2011)
39. Lee,D., Seung,H.: Learning the parts of objects by nonnegativematrix factorization.Nature 401, 788–791

(1999)
40. Lee, D., Seung, H.: Algorithms for non-negative matrix factorization. In: Advances in Neural Information

Processing Systems, vol. 13, pp. 556–562 (2001)

123

http://arxiv.org/abs/1407.4095
http://math.mit.edu/~goemans/PAPERS/permutahedron
http://math.mit.edu/~goemans/PAPERS/permutahedron
http://arxiv.org/abs/1404.4864
http://arxiv.org/abs/1305.4600
http://arxiv.org/abs/1307.3543


400 J Glob Optim (2016) 65:369–400

41. Lee, T., Shraibman, A.: Lower Bounds in Communication Complexity. Found. Trends Theor. Comput.
Sci. 3(4), 263–399 (2007)

42. Moitra, A.: An Almost Optimal Algorithm for Computing Nonnegative Rank. in Proceedings of the 24th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’13), pp. 1454–1464 (2013)

43. Oelze, M., Vandaele, A., Weltge, S.: Computing the Extension Complexities of all 4-Dimensional 0/1-
polytopes (2014). arXiv:1406.4895

44. Padrol, A., Pfeifle, J.: Polygons as Slices of Higher-Dimensional Polytopes (2014). arXiv:1404.2443
45. Pirlot, M.: General local search methods. Eur. J. Oper. Res. 92(3), 493–511 (1996)
46. Rothvoss, T.: The Matching Polytope has Exponential Extension Complexity (2013). arXiv:1311.2369
47. Shitov, Y.: Sublinear Extensions of Polygons (2014). arXiv:1412.0728
48. Shitov, Y.: An upper bound for nonnegative rank. J. Combin. Theory Ser. A 122, 126–132 (2014)
49. Shitov, Y.: Nonnegative Rank Depends on the Field (2015). arXiv:1505.01893
50. Takahashi, N., Hibi, R.: Global convergence of modified multiplicative updates for nonnegative matrix

factorization. Comput. Optim. Appl. 57(2), 417–440 (2014)
51. Thomas, L.: Rank factorization of nonnegative matrices. SIAM Rev. 16(3), 393–394 (1974)
52. Vandaele, A., Gillis, N., Glineur, F.: On the Linear Extension Complexity of Regular n-gons (2015).

arXiv:1505.08031
53. Vavasis, S.: On the complexity of nonnegative matrix factorization. SIAM J. Optim. 20(3), 1364–1377

(2010)
54. Watson, T.: Sampling Versus Unambiguous Nondeterminism in Communication Complexity (2014).

http://www.cs.toronto.edu/~thomasw/papers/nnr
55. Yannakakis, M.: Expressing combinatorial optimization problems by linear programs. J. Comput. Syst.

Sci. 43(3), 441–466 (1991)
56. Zdunek, R.: Initialization of nonnegative matrix factorization with vertices of convex polytope. In: Arti-

ficial Intelligence and Soft Computing, vol. 7267, pp. 448–455. Lecture Notes in Computer Science
(2012)

123

http://arxiv.org/abs/1406.4895
http://arxiv.org/abs/1404.2443
http://arxiv.org/abs/1311.2369
http://arxiv.org/abs/1412.0728
http://arxiv.org/abs/1505.01893
http://arxiv.org/abs/1505.08031
http://www.cs.toronto.edu/~thomasw/papers/nnr

	Heuristics for exact nonnegative matrix factorization
	Abstract
	1 Introduction
	1.1 Motivating applications
	1.2 Computational complexity
	1.3 Contribution and outline of the paper

	2 Benchmark nonnegative matrices for exact NMF
	3 Designing heuristics: key ingredients and multi-start examples
	3.1 Two multi-start heuristics
	3.1.1 Multi-start 1
	3.1.2 Multi-start 2
	3.1.3 Comparing the multi-start heuristics

	3.2 Selecting an initialization strategy
	3.3 Selecting an NMF algorithm

	4 Two heuristics for NMF
	4.1 Simulated annealing
	4.2 Rank-by-rank heuristic
	4.3 Hybridization

	5 Numerical experiments: comparing exact NMF heuristics
	5.1 Limits of the heuristics for exact NMF

	6 Using exact NMF heuristics for new insights on the nonnegative rank
	6.1 Kronecker product of two nonnegative matrices
	6.2 Slack matrices of regular n-gons
	6.3 Generic n-gons
	6.4 Extension complexity of the correlation polytope

	7 Conclusion and further research
	Acknowledgments
	Appendix: Sensitivity to the parameters α and Δt
	Parameters for simulated annealing
	Parameters for the rank-by-rank heuristic
	Initialization for the hybridization
	References




